Journal Home > Volume 10 , Issue 3

The precise localization of organic molecules in controllable positions is an important step towards constructing functional nanostructures via the bottom-up strategy. Herein, supramolecularly organized C70-fullerene assemblies on macrocycle-modified surfaces were investigated using scanning tunneling microscopy (STM) in combination with theoretical calculations. The results revealed that an up-assembly of C70-fullerene adlayers was successfully formed on top of the bottom macrocycle arrays. Density functional theory (DFT) calculations confirmed that the macrocycle networks along with the co-adsorbed solvent 1-phenyloctane served as a selective template for trapping C70-fullerene molecules in the spectral sites and acted as a support for the C70-fullerene molecules. The periodical distribution of the C70-fullerene molecules should facilitate understanding of the strong dependence of the arrangement of C70-fullerene upon the specific interactions (apart from spatial recognition) derived from modification of the sub-monolayers.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Specific distribution of orientated C70-fullerene triggered by solvent-tuned macrocycle adlayer

Show Author's information Yanfang Geng1,§Ping Li1,§Jindong Xue1Dapeng Luo2,§Junyong Zhang3Lijin Shu2( )Ke Deng1( )Jingli Xie3( )Qingdao Zeng1( )
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, ZhongguancunBeijing100190China
Key Laboratory of Organosilicol Chemistry and Material Technology of Ministry of EducationHangzhou Normal UniversityHangzhou310012China
College of Biological, Chemical Science and EngineeringJiaxing UniversityJiaxing314001China

§These authors contributed equally to this work.

Abstract

The precise localization of organic molecules in controllable positions is an important step towards constructing functional nanostructures via the bottom-up strategy. Herein, supramolecularly organized C70-fullerene assemblies on macrocycle-modified surfaces were investigated using scanning tunneling microscopy (STM) in combination with theoretical calculations. The results revealed that an up-assembly of C70-fullerene adlayers was successfully formed on top of the bottom macrocycle arrays. Density functional theory (DFT) calculations confirmed that the macrocycle networks along with the co-adsorbed solvent 1-phenyloctane served as a selective template for trapping C70-fullerene molecules in the spectral sites and acted as a support for the C70-fullerene molecules. The periodical distribution of the C70-fullerene molecules should facilitate understanding of the strong dependence of the arrangement of C70-fullerene upon the specific interactions (apart from spatial recognition) derived from modification of the sub-monolayers.

Keywords: scanning tunneling microscopy, supramolecular assembly, C70-fullerene, macrocycle

References(43)

1

Holliday, B. J.; Mirkin, C. A. Strategies for the construction of supramolecular compounds through coordination chemistry. Angew. Chem., Int. Ed. 2001, 40, 2022–2043.

2

Zhang, S. G. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 2003, 21, 1171–1178.

3

Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Halogen bonding based recognition processes: A world parallel to hydrogen bonding. Acc. Chem. Res. 2005, 38, 386–395.

4

Ariga, K.; Hill, J. P.; Ji, Q. M. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys. Chem. Chem. Phys. 2007, 9, 2319–2340.

5

Douglas, S. M.; Dietz, H.; Liedl, T.; Högberg, B.; Graf, F.; Shih, W. M. Self-assembly of DNA into nanoscale threedimensional shapes. Nature 2009, 459, 414–418.

6

Ariga, K.; Yamauchi, Y.; Rydzek, G.; Ji, Q. M.; Yonamine, Y.; Wu, K. C. W.; Hill, J. P. Layer-by-layer nanoarchitectonics: Invention, innovation, and evolution. Chem. Lett. 2014, 43, 36–68.

7

Thilgen, C.; Diederich, F. Structural aspects of fullerene chemistry—A journey through fullerene chirality. Chem. Rev. 2006, 106, 5049–5135.

8

Vives, G.; Tour, J. M. Synthesis of single-molecule nanocars. Acc. Chem. Res. 2009, 42, 473–487.

9

Martin, C. A.; Ding, D. P.; Sørensen, J. K.; Bjørnholm, T.; van Ruitenbeek, J. M.; van der Zant, H. S. J. Fullerenebased anchoring groups for molecular electronics. J. Am. Chem. Soc. 2008, 130, 13198–13199.

10

Matsuo, Y.; Kanaizuka, K.; Matsuo, K.; Zhong, Y. W.; Nakae, T.; Nakamura, E. Photocurrent-generating properties of organometallic fullerene molecules on an electrode. J. Am. Chem. Soc. 2008, 130, 5016–5017.

11

Liu, X.; Zhan, Y.; Braun, S.; Li, F.; Fahlman, M. Interfacial electronic properties of pentacene tuned by a molecular monolayer of C60. Phys. Rev. B 2009, 80, 115401.

12

Guldi, D. M.; Illescas, B. M.; Atienza, C. M.; Wielopolski, M.; Martín, N. Fullerene for organic electronics. Chem. Soc. Rev. 2009, 38, 1587–1597.

13

Hornbaker, D. J.; Kahng, S. J.; Misra, S.; Smith, B. W.; Johnson, A. T.; Mele, E. J.; Luzzi, D. E.; Yazdani, A. Mapping the one-dimensional electronic states of nanotube peapod structures. Science 2002, 295, 828–831.

14

Yoshimoto, S. Molecular assemblies of functional molecules on gold electrode surfaces studied by electrochemical scanning tunneling microscopy: Relationship between function and adlayer structures. Bull. Chem. Soc. Jpn. 2006, 79, 1167–1190.

15

Diederich, F.; Gómez-López, M. Supramolecular fullerene chemistry. Chem. Soc. Rev. 1999, 28, 263–277.

16

Guldi, D. M.; Zerbetto, F.; Georgakilas, V.; Prato, M. Ordering fullerene materials at nanometer dimensions. Acc. Chem. Res. 2005, 38, 38–43.

17

Bonifazi, D.; Enger, O.; Diederich, F. Supramolecular [60]fullerene chemistry on surfaces. Chem. Soc. Rev. 2007, 36, 390–414.

18

Babu, S. S.; Möhwald, H.; Nakanishi, T. Recent progress in morphology control of supramolecular fullerene assemblies and its applications. Chem. Soc. Rev. 2010, 39, 4021–4035.

19

Sánchez, L.; Martín, N.; Guldi, D. M. Hydrogen-bonding motifs in fullerene chemistry. Angew. Chem., Int. Ed. 2005, 44, 5374–5382.

20

Bonifazi, D.; Spillmann, H.; Kiebele, A.; de Wild, M.; Seiler, P.; Cheng, F. Y.; Gü ntherodt, H. J.; Jung, T.; Diederich, F. Supramolecular patterned surfaces driven by cooperative assembly of C60 and porphyrins on metal substrates. Angew. Chem., Int. Ed. 2004, 43, 4759–4763.

21

Pan, G. B.; Liu, J. M.; Zhang, H. M.; Wan, L. J.; Zheng, Q. Y.; Bai, C. L. Configurations of a calix[8]arene and a C60/calix[8]arene complex on a Au(111) surface. Angew. Chem., Int. Ed. 2003, 42, 2747–2751.

22

Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.; Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 2003, 424, 1029–1031.

23

Yoshimoto, S.; Tsutsumi, E.; Fujii, O.; Narita, R.; Itaya, K. Effect of underlying coronene and perylene adlayers for [60]fullerene molecular assembly. Chem. Commun. 2005, 1188–1190.

24

Kiebele, A.; Bonifazi, D.; Cheng, F. Y.; Stöhr, M.; Diederich, F.; Jung, T.; Spillmann, H. Adsorption and dynamics of long-range interacting fullerenes in a flexible, twodimensional, nanoporous porphyrin network. ChemPhysChem 2006, 7, 1462–1470.

25

Yoshimoto, S.; Honda, Y.; Ito, O.; Itaya, K. Supramolecular pattern of fullerene on 2D bimolecular "chessboard" consisting of bottom-up assembly of porphyrin and phthalocyanine molecules. J. Am. Chem. Soc. 2008, 130, 1085–1092.

26

MacLeod, J. M.; Ivasenko, O.; Fu, C. Y.; Taerum, T.; Rosei, F.; Perepichka, D. F. Supramolecular ordering in oligothiophene-fullerene monolayers. J. Am. Chem. Soc. 2009, 131, 16844–16850.

27

Di Marino, M.; Sedona, F.; Sambi, M.; Carofiglio, T.; Lubian, E.; Casarin, M.; Tondello, E. STM investigation of temperature-dependent two-dimensional supramolecular architectures of C60 and amino-tetraphenylporphyrin on Ag(110). Langmuir 2010, 26, 2466–2472.

28

Li, M.; Zeng, Q. D.; Wang, C. Self-assembled supramolecular networks at interfaces: Molecular immobilization and recognition using nanoporous templates. Sci. China Phys. Mech. Astron. 2011, 54, 1739–1748.

29

Räisänen, M. T.; Slater, A. G.; Champness, N. R.; Buck, M. Effects of pore modification on the templating of guest molecules in a 2D honeycomb network. Chem. Sci. 2012, 3, 84–92.

30

Wang, J.; Tang, J. M.; Larson, A. M.; Miller, G. P.; Pohl, K. Sharp organic interface of molecular C60 chains and a pentacene derivative SAM on Au(788): A combined STM & DFT study. Surf. Sci. 2013, 618, 78–82.

31

Pan, G. B.; Cheng, X. H.; Höger, S.; Freyland, W. 2D supramolecular structures of a shape-persistent macrocycle and co-deposition with fullerene on HOPG. J. Am. Chem. Soc. 2006, 128, 4218–4219.

32

Cui, K.; Schlütter, F.; Ivasenko, O.; Kivala, M.; Schwab, M. G.; Lee, S. -L.; Mertens, S. F. L.; Tahara, K.; Tobe, Y.; Muellen, K. et al. Multicomponent self-assembly with a shape-persistent N-heterotriangulene macrocycle on Au(111). Chem. —Eur. J. 2015, 21, 1652–1659.

33

Mena-Osteritz, E.; Bäuerle, P. Complexation of C60 on a cyclothiophene monolayer template. Adv. Mater. 2006, 18, 447–451.

34

Li, M.; Deng, K.; Lei, S. B.; Yang, Y. L.; Wang, T. S.; Shen, Y. T.; Wang, C. R.; Zeng, Q. D.; Wang, C. Site-selective fabrication of two-dimensional fullerene arrays by using a supramolecular template at the liquid-solid interface. Angew. Chem., Int. Ed. 2008, 47, 6717–6721.

35

Xu, J.; Zeng, Q. D. Construction of two-dimensional (2D) H-bonded supramolecular nanostructures studied by STM. Chin. Chem. Lett. 2013, 24, 177–182.

36

Geng, Y. F.; Liu, M. Q.; Xue, J. D.; Xu, P.; Wang, Y. F.; Shu, L. J.; Zeng, Q. D.; Wang, C. A template-confined fabrication of controllable gold nanoparticles based on the two-dimensional nanostructure of macrocycles. Chem. Commun. 2015, 51, 6820–6823.

37

Chen, Y. M.; Nie, H.; Deng, K.; Wu, S. L.; Xue, J. D.; Shu, L. J.; Yu, Y.; Geng, Y. F.; Li, P.; Yang, Y. L. et al. Peptide recognition by functional supramolecular nanopores with complementary size and binding sites. Nano Res. 2016, 9, 1452–1459.

38

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

39

Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.

40

Katsonis, N.; Marchenko, A.; Fichou, D. Adsorption and self-assembly of C70 molecules at the Au(111)/n-tetradecane interface: A scanning tunneling microscopy study. Adv. Mater. 2004, 16, 309–312.

41

Ramachandram, B.; Saroja, G.; Sankaran, N. B.; Samanta, A. Unusually high fluorescence enhancement of some 1, 8-naphthalimide derivatives induced by transition metal salts. J. Phys. Chem. B 2000, 104, 11824–11832.

42

Wang, M. X.; Zhang, X. H.; Zheng, Q. Y. Synthesis, structure, and [60]fullerene complexation properties of azacalix[m]arene[n]pyridines. Angew. Chem., Int. Ed. 2004, 43, 838–842.

43

Nakayama, M.; Kautz, N. A.; Wang, T.; Sibener, S. J. Formation of rectangular packing and one-dimensional lines of C60 on 11-phenoxyundecanethiol self-assembled monolayers on Au(111). Langmuir 2012, 28, 4694–4701.

File
nr-10-3-991_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 August 2016
Revised: 19 October 2016
Accepted: 04 November 2016
Published: 16 December 2016
Issue date: March 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (Nos. 2016YFA0200700, 2013CB934200, and 2012CB933001) and the National Natural Science Foundation of China (No. 21472029).

Return