Journal Home > Volume 10 , Issue 4

The inter-nanocrystal (NC) distance, necking degree, ordering level, and NC surface ligands all affect the electronic and optoelectronic properties of NC solids. Herein, we introduce a unique PbS structure of necking percolative superlattices to exclude the morphological factors and study the effect of ligands on the NC properties. X-ray photoelectron spectroscopy data indicate that 1, 2-ethanedithiol (EDT), oxalic acid, mercaptopropionic acid, and NH4SCN (SCN) ligands were attached to the surface of NCs by substrate-supported ligand exchange. Field-effect transistors were tested and photodetector measurements were performed to compare these NC solids. An SCN-treated film had the highest mobility and responsivity under high-power intensity irradiation owing to its high carrier density, whereas an EDT-treated film had the lowest mobility, photocurrent, and dark current. These findings introduce new avenues for choosing suitable ligands for NC applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ligand effects on electronic and optoelectronic properties of two-dimensional PbS necking percolative superlattices

Show Author's information Man Zhao1,§Defang Ding1,§Fangxu Yang3Dawei Wang1Jiawei Lv1Wenping Hu3Chenguang Lu1,2( )Zhiyong Tang1,2( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
University of Chinese Academy of Sciences19 A Yuquan Rd, Shijingshan DistrictBeijing100049China
Key Laboratory of Molecular Optoelectronic Sciences, School of ScienceTianjin University & Collaborative Innovation Center of Chemical Science and EngineeringTianjin300072China

§ These authors contributed equally to this work.

Abstract

The inter-nanocrystal (NC) distance, necking degree, ordering level, and NC surface ligands all affect the electronic and optoelectronic properties of NC solids. Herein, we introduce a unique PbS structure of necking percolative superlattices to exclude the morphological factors and study the effect of ligands on the NC properties. X-ray photoelectron spectroscopy data indicate that 1, 2-ethanedithiol (EDT), oxalic acid, mercaptopropionic acid, and NH4SCN (SCN) ligands were attached to the surface of NCs by substrate-supported ligand exchange. Field-effect transistors were tested and photodetector measurements were performed to compare these NC solids. An SCN-treated film had the highest mobility and responsivity under high-power intensity irradiation owing to its high carrier density, whereas an EDT-treated film had the lowest mobility, photocurrent, and dark current. These findings introduce new avenues for choosing suitable ligands for NC applications.

Keywords: nanocrystals, mobility, ligand, necking percolative superlattices, trap states

References(51)

1

Wang, R. L.; Shang, Y. Q.; Kanjanaboos, P.; Zhou, W. J.; Ning, Z. J.; Sargent, E. H. Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ. Sci. 2016, 9, 1130-1143.

2

Kramer, I. J.; Sargent, E. H. The architecture of colloidal quantum dot solar cells: Materials to devices. Chem. Rev. 2014, 114, 863-882.

3

Liu, S. Q.; Tang, Z. -R.; Sun, Y. G.; Colmenares, J. C.; Xu, Y. -J. One-dimension-based spatially ordered architectures for solar energy conversion. Chem. Soc. Rev. 2015, 44, 5053-5075.

4

Yin, Z. Y.; Zhu, J. X.; He, Q. Y.; Cao, X. H.; Tan, C. L.; Chen, H. Y.; Yan, Q. Y.; Zhang, H. Graphene-based materials for solar cell applications. Adv. Energy Mater. 2014, 4, 1300574.

5

Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13-23.

6

Demir, H. V.; Nizamoglu, S.; Erdem, T.; Mutlugun, E.; Gaponik, N.; Eychmüller, A. Quantum dot integrated LEDs using photonic and excitonic color conversion. Nano Today 2011, 6, 632-647.

7

Saran, R.; Curry, R. J. Lead sulphide nanocrystal photodetector technologies. Nat. Photonics 2016, 10, 81-92.

8

Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180-183.

9

Chen, H. Y.; Liu, H.; Zhang, Z. M.; Hu, K.; Fang, X. S. Nanostructured photodetectors: From ultraviolet to terahertz. Adv. Mater. 2016, 28, 403-433.

10
Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 201, 6, 74-80.https://doi.org/10.1021/nn2024557
DOI
11

Talapin, D. V.; Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 2005, 310, 86-89.

12

Kagan, C. R.; Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 2015, 10, 1013-1026.

13

Hetsch, F.; Zhao, N.; Kershaw, S. V.; Rogach, A. L. Quantum dot field effect transistors. Mater. Today 2013, 16, 312-325.

14

Yang, H. R.; Bahk, J. -H.; Day, T.; Mohammed, A. M. S.; Snyder, G. J.; Shakouri, A.; Wu, Y. Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking. Nano Lett. 2015, 15, 1349-1355.

15

Fan, F. -J.; Wu, L.; Yu, S. -H. Energetic I-Ⅲ-VI2 and I2-Ⅱ-VI-VI4 nanocrystals: Synthesis, photovoltaic and thermoelectric applications. Energy Environ. Sci. 2014, 7, 190-208.

16

Osedach, T. P.; Zhao, N.; Andrew, T. L.; Brown, P. R.; Wanger, D. D.; Strasfeld, D. B.; Chang, L. Y.; Bawendi, M. G.; Bulović, V. Bias-stress effect in 1, 2-ethanedithiol-treated PbS quantum dot field-effect transistors. ACS Nano 2012, 6, 3121-3127.

17

Law, M.; Luther, J. M.; Song, O.; Hughes, B. K.; Perkins, C. L.; Nozik, A. J. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. J. Am. Chem. Soc. 2008, 130, 5974-5985.

18

Liu, Y.; Gibbs, M.; Puthussery, J.; Gaik, S.; Ihly, R.; Hillhouse, H. W.; Law, M. Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. Nano Lett. 2010, 10, 1960-1969.

19

Nag, A.; Kovalenko, M. V.; Lee, J. S.; Liu, W. Y.; Spokoyny, B.; Talapin, D. V. Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, and NH2- as surface ligands. J. Am. Chem. Soc. 2011, 133, 10612-10620.

20

Dirin, D. N.; Dreyfuss, S.; Bodnarchuk, M. I.; Nedelcu, G.; Papagiorgis, P.; Itskos, G.; Kovalenko, M. V. Lead halide perovskites and other metal halide complexes as inorganic capping ligands for colloidal nanocrystals. J. Am. Chem. Soc. 2014, 136, 6550-6553.

21

Kovalenko, M. V.; Scheele, M.; Talapin, D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 2009, 324, 1417-1420.

22

Ning, Z. J.; Voznyy, O.; Pan, J.; Hoogland, S.; Adinolfi, V.; Xu, J. X.; Li, M.; Kirmani, A. R.; Sun, J. P.; Minor, J. et al. Air-stable n-type colloidal quantum dot solids. Nat. Mater. 2014, 13, 822-828.

23

Zhitomirsky, D.; Furukawa, M.; Tang, J.; Stadler, P.; Hoogland, S.; Voznyy, O.; Liu, H.; Sargent, E. H. N-type colloidal-quantum-dot solids for photovoltaics. Adv. Mater. 2012, 24, 6181-6185.

24

Zhang, H.; Jang, J.; Liu, W. Y.; Talapin, D. V. Colloidal nanocrystals with inorganic halide, pseudohalide, and halometallate ligands. ACS Nano 2014, 8, 7359-7369.

25

Zhitomirsky, D.; Voznyy, O.; Levina, L.; Hoogland, S.; Kemp, K. W.; Ip, A. H.; Thon, S. M.; Sargent, E. H. Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. Nat. Commun. 2014, 5, 3803.

26

Guglietta, G. W.; Diroll, B. T.; Gaulding, E. A.; Fordham, J. L.; Li, S. M.; Murray, C. B.; Baxter, J. B. Lifetime, mobility, and diffusion of photoexcited carriers in ligand-exchanged lead selenide nanocrystal films measured by time-resolved terahertz spectroscopy. ACS Nano 2015, 9, 1820-1828.

27

Fafarman, A. T.; Koh, W. -K.; Diroll, B. T.; Kim, D. K.; Ko, D. -K.; Oh, S. J.; Ye, X. C.; Doan-Nguyen, V.; Crump, M. R.; Reifsnyder, D. C. et al. Thiocyanate-capped nanocrystal colloids: Vibrational reporter of surface chemistry and solution-based route to enhanced coupling in nanocrystal solids. J. Am. Chem. Soc. 2011, 133, 15753-15761.

28

Choi, J. -H.; Fafarman, A. T.; Oh, S. J.; Ko, D. -K.; Kim, D. K.; Diroll, B. T.; Muramoto, S.; Gillen, J. G.; Murray, C. B.; Kagan, C. R. Bandlike transport in strongly coupled and doped quantum dot solids: A route to high-performance thin-film electronics. Nano Lett. 2012, 12, 2631-2638.

29

Oh, S. J.; Berry, N. E.; Choi, J. -H.; Gaulding, E. A.; Lin, H. F.; Paik, T.; Diroll, B. T.; Muramoto, S.; Murray, C. B.; Kagan, C. R. Designing high-performance PbS and PbSe nanocrystal electronic devices through stepwise, post-synthesis, colloidal atomic layer deposition. Nano Lett. 2014, 14, 1559-1566.

30

Jeong, K. S.; Tang, J.; Liu, H.; Kim, J.; Schaefer, A. W.; Kemp, K.; Levina, L.; Wang, X. H.; Hoogland, S.; Debnath, R. et al. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano 2012, 6, 89-99.

31

Chuang, C. -H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796-801.

32

Lan, X. Z.; Voznyy, O.; Kiani, A.; García de Arquer, F. P.; Abbas, A. S.; Kim, G. H.; Liu, M. X.; Yang, Z. Y.; Walters, G.; Xu, J. X. et al. Passivation using molecular halides increases quantum dot solar cell performance. Adv. Mater. 2016, 28, 299-304.

33

Zabet-Khosousi, A.; Dhirani, A. A. Charge transport in nanoparticle assemblies. Chem. Rev. 2008, 108, 4072-4124.

34

Whitham, K.; Yang, J.; Savitzky, B. H.; Kourkoutis, L. F.; Wise, F.; Hanrath, T. Charge transport and localization in atomically coherent quantum dot solids. Nat. Mater. 2016, 15, 557-563.

35

Evers, W. H.; Schins, J. M.; Aerts, M.; Kulkarni, A.; Capiod, P.; Berthe, M.; Grandidier, B.; Delerue, C.; van der Zant, H. S. J.; van Overbeek, C. et al. High charge mobility in two- dimensional percolative networks of PbSe quantum dots connected by atomic bonds. Nat. Commun. 2015, 6, 8195.

36

Sandeep, C. S. S.; Azpiroz, J. M.; Evers, W. H.; Boehme, S. C.; Moreels, I.; Kinge, S.; Siebbeles, L. D. A.; Infante, I.; Houtepen, A. J. Epitaxially connected PbSe quantum-dot films: Controlled neck formation and optoelectronic properties. ACS Nano 2014, 8, 11499-11511.

37

Balazs, D. M.; Dirin, D. N.; Fang, H. H.; Protesescu, L.; ten Brink, G. H.; Kooi, B. J.; Koyalenko, M. V.; Loi, M. A. Counterion-mediated ligand exchange for PbS colloidal quantum dot superlattices. ACS Nano 2015, 9, 11951- 11959.

38

Oh, S. J.; Wang, Z. Q.; Berry, N. E.; Choi, J. H.; Zhao, T. S.; Gaulding, E. A.; Paik, T.; Lai, Y. M.; Murray, C. B.; Kagan, C. R. Engineering charge injection and charge transport for high performance PbSe nanocrystal thin film devices and circuits. Nano Lett. 2014, 14, 6210-6216.

39

Lagendijk, A.; van Tiggelen, B.; Wiersma, D. S. Fifty years of anderson localization. Phys. Today 2009, 62, 24-29.

40

Hines, M. A.; Scholes, G. D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 2003, 15, 1844-1849.

41

Zhao, M.; Yang, F. X.; Liang, C.; Wang, D. W.; Ding, D. F.; Lv, J. W.; Zhang, J. Q.; Hu, W. P.; Lu, C. G.; Tang, Z. Y. High hole mobility in long-range ordered 2D lead sulfide nanocrystal monolayer films. Adv. Funct. Mater. 2016, 26, 5182-5188.

42

Gao, Y. N.; Aerts, M.; Sandeep, C. S. S.; Talgorn, E.; Savenije, T. J.; Kinge, S.; Siebbeles, L. D. A.; Houtepen, A. J. Photoconductivity of PbSe quantum-dot solids: Dependence on ligand anchor group and length. ACS Nano 2012, 6, 9606-9614.

43

Konstantatos, G.; Clifford, J.; Levina, L.; Sargent, E. H. Sensitive solution-processed visible-wavelength photodetectors. Nat. Photonics 2007, 1, 531-534.

44

Yakunin, S.; Dirin, D. N.; Protesescu, L.; Sytnyk, M.; Tollabimazraehno, S.; Humer, M.; Hackl, F.; Fromherz, T.; Bodnarchuk, M. I.; Kovalenko, M. V. et al. High infrared photoconductivity in films of arsenic-sulfide-encapsulated lead-sulfide nanocrystals. ACS Nano 2014, 8, 12883-12894.

45

Böberl, M.; Kovalenko, M. V.; Gamerith, S.; List, E. J. W.; Heiss, W. Inkjet-printed nanocrystal photodetectors operating up to 3 μm wavelengths. Adv. Mater. 2007, 19, 3574-3578.

46

Szendrei, K.; Cordella, F.; Kovalenko, M. V.; Böberl, M.; Hesser, G.; Yarema, M.; Jarzab, D.; Mikhnenko, O. V.; Gocalinska, A.; Saba, M. et al. Solution-processable near- IR photodetectors based on electron transfer from PbS nanocrystals to fullerene derivatives. Adv. Mater. 2009, 21, 683-687.

47

Acharya, S.; Dutta, M.; Sarkar, S.; Basak, D.; Chakraborty, S.; Pradhan, N. Synthesis of micrometer length indium sulfide nanosheets and study of their dopant induced photoresponse properties. Chem. Mater. 2012, 24, 1779-1785.

48

Tang, J.; Konstantatos, G.; Hinds, S.; Myrskog, S.; Pattantyus- Abraham, A. G.; Clifford, J.; Sargent, E. H. Heavy-metal- free solution-processed nanoparticle-based photodetectors: Doping of intrinsic vacancies enables engineering of sensitivity and speed. ACS Nano 2009, 3, 331-338.

49

Barkhouse, D. A. R.; Pattantyus-Abraham, A. G.; Levina, L.; Sargent, E. H. Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency. ACS Nano 2008, 2, 2356-2362.

50

Osedach, T. P.; Zhao, N.; Geyer, S. M.; Chang, L. Y.; Wanger, D. D.; Arango, A. C.; Bawendi, M. C.; Bulović, V. Interfacial recombination for fast operation of a planar organic/QD infrared photodetector. Adv. Mater. 2010, 22, 5250-5254.

51

Li, Y. B.; Tokizono, T.; Liao, M. Y.; Zhong, M. A.; Koide, Y.; Yamada, I.; Delaunay, J. J. Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection. Adv. Funct. Mater. 2010, 20, 3972-3978.

File
nr-10-4-1249_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 September 2016
Revised: 24 October 2016
Accepted: 28 October 2016
Published: 29 November 2016
Issue date: April 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported financially by Chinese ministry of science and technology (No. 2016YFA0200700), National Basic Research Program of China (No. 2014CB931801, Z. Y. T.), National Natural Science Foundation of China (No. 21473044, C. G. L.; Nos. 21475029 and 91427302, Z. Y. T.), Instrument Developing Project of the Chinese Academy of Sciences (No. YZ201311, Z. Y. T.), CAS-CSIRO Cooperative Research Program (No. GJHZ1503, Z. Y. T.), and "Strategic Priority Research Program" of Chinese Academy of Sciences (No. XDA09040100, Z. Y. T.).

Return