AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly sensitive deep-silver-nanowell arrays (d-AgNWAs) for refractometric sensing

Xueyao LiuWendong LiuLiping FangShunsheng YeHuaizhong ShenBai Yang( )
State Key Laboratory of Supramolecular Structure and MaterialsCollege of Chemistry, Jilin UniversityChangchun130012China
Show Author Information

Graphical Abstract

Abstract

Large-area deep-silver-nanowell arrays (d-AgNWAs) for plasmonic sensing were manufactured by combining colloidal lithography with metal deposition. In contrast to most previous studies, we shed light on the outstanding sensitivity afforded by deep metallic nanowells (up to 400 nm in depth). Using gold nanohole arrays as a mask, a silicon substrate was etched into deep silicon nanowells, which acted as a template for subsequent Ag deposition, resulting in the formation of d-AgNWAs. Various geometric parameters were separately tailored to study the changes in the optical performance and further optimize the sensing ability of the structure. After several rounds of selection, the best sensing d-AgNWA, which had a Ag thickness of 400 nm, template depth of 400 nm, hole diameter of 504 nm, and period of 1 μm, was selected. It had a sensitivity of 933 nm·RIU–1, which is substantially higher than those of most common thin metallic nanohole arrays. As a proof of concept, the as-prepared structure was employed as a substrate for an antigen-antibody recognition immunoassay, which indicates its great potential for label-free real-time biosensing.

Electronic Supplementary Material

Download File(s)
nr-10-3-908_ESM.pdf (2.5 MB)

References

1

Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.

2

Zhong, L. B.; Jiang, Y. Y.; Liow, C.; Meng, F. B.; Sun, Y. H.; Chandran, B. K.; Liang, Z. Q.; Jiang, L.; Li, S. Z.; Chen, X. D. Highly sensitive electro-plasmonic switches based on fivefold stellate polyhedral gold nanoparticles. Small 2015, 11, 5395–5401.

3

Krishnan, A.; Thio, T.; Kim, T. J.; Lezec, H. J.; Ebbesen, T. W.; Wolff, P. A.; Pendry, J.; Martin-Moreno, L.; Garcia-Vidal, F. J. Evanescently coupled resonance in surface plasmon enhanced transmission. Opt. Commun. 2001, 200, 1–7.

4

Gordon, R.; Sinton, D.; Kavanagh, K. L.; Brolo, A. G. A new generation of sensors based on extraordinary optical transmission. Acc. Chem. Res. 2008, 41, 1049–1057.

5

Jiang, L.; Chen, X. D.; Lu, N.; Chi, L. F. Spatially confined assembly of nanoparticles. Acc. Chem. Res. 2014, 47, 3009–3017.

6

Jiang, L.; Sun, Y. H.; Nowak, C.; Kibrom, A.; Zou, C. J.; Ma, J.; Fuchs, H.; Li, S. Z.; Chi, L. F.; Chen, X. D. Patterning of plasmonic nanoparticles into multiplexed one-dimensional arrays based on spatially modulated electrostatic potential. ACS Nano 2011, 5, 8288–8294.

7

Jiang, L.; Zou, C. J.; Zhang, Z. H.; Sun, Y. H.; Jiang, Y. Y.; Leow, W.; Liedberg, B.; Li, S. Z.; Chen, X. D. Synergistic modulation of surface interaction to assemble metal nanoparticles into two-dimensional arrays with tunable plasmonic properties. Small 2014, 10, 609–616.

8

Du, J. J.; Zhu, B. W.; Chen, X. D. Urine for plasmonic nanoparticle-based colorimetric detection of mercury ion. Small 2013, 9, 4104–4111.

9

Walsh, G. F.; Negro, L. D. Engineering plasmon-enhanced Au light emission with planar arrays of nanoparticles. Nano Lett. 2013, 13, 786–792.

10

Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 1996, 12, 788–800.

11

Stewart, M. E.; Mack, N. H.; Malyarchuk, V.; Soares, J. A. N. T.; Lee, T. W.; Gray, S. K.; Nuzzo, R. G.; Rogers, J. A. Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proc. Natl. Acad. Sci. USA 2006, 103, 17143–17148.

12

Ye, S. S.; Zhang, X. M.; Chang, L. X.; Wang, T. Q.; Li, Z. B.; Zhang, J. H.; Yang, B. High-performance plasmonic sensors based on two-dimensional Ag nanowell crystals. Adv. Opt. Mater. 2014, 2, 779–787.

13

Yang, S. C.; Hou, J. L.; Finn, A.; Kumar, A.; Ge, Y.; Fischer, W. J. Synthesis of multifunctional plasmonic nanopillar array using soft thermal nanoimprint lithography for highly sensitive refractive index sensing. Nanoscale 2015, 7, 5760–5766.

14

Zheng, Y. B.; Kiraly, B.; Cheunkar, S.; Huang, T. J.; Weiss, P. S. Incident-angle-modulated molecular plasmonic switches: A case of weak exciton-plasmon coupling. Nano Lett. 2011, 11, 2061–2065.

15

Sun, Y. H.; Jiang, L.; Zhong, L. B.; Jiang, Y. Y.; Chen, X. D. Towards active plasmonic response devices. Nano Res. 2015, 8, 406–417.

16

Weiler, M.; Quint, S. B.; Klenka, S.; Pacholski C. Bottom-up fabrication of nanohole arrays loaded with gold nanoparticles: Extraordinary plasmonic sensors. Chem. Commun. 2014, 50, 15419–15422.

17

Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinary optical transmission through subwavelength hole arrays. Nature 1998, 391, 667–669.

18

Genet, C.; Ebbesen, T. W. Light in tiny holes. Nature 2007, 445, 39–46.

19

Yue, W. S.; Wang, Z. H.; Yang, Y.; Li, J. Q.; Wu, Y.; Chen, L. Q.; Ooi, B.; Wang, X. B.; Zhang, X. X. Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications. Nanoscale 2014, 6, 7917–7923.

20

Brolo, A. G.; Gordon, R.; Leathem, B.; Kavanagh, K. L. Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 2004, 20, 4813–4815.

21

De Leebeeck, A.; Kumar, L. K. S.; de Lange, V.; Sinton, D.; Gordon, R.; Brolo, A. G. On-chip surface-based detection with nanohole arrays. Anal. Chem. 2007, 79, 4094–4100.

22

Lesuffleur, A.; Im, H.; Lindquist, N. C.; Lim, K. S.; Oh, S. H. Laser-illuminated nanohole arrays for multiplex plasmonic microarray sensing. Opt. Express 2008, 16, 219–224.

23

Feuz, L.; Jönsson, P.; Jonsson, M. P.; Höök, F. Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas. ACS Nano 2010, 4, 2167–2177.

24

Zhang, X. M.; Li, Z. B.; Ye, S. S.; Wu, S.; Zhang, J. H.; Cui, L. Y.; Li, A. R.; Wang, T. Q.; Li, S. Z.; Yang, B. Elevated Ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission. J. Mater. Chem. 2012, 22, 8903–8910.

25

Yanik, A. A.; Huang, M.; Kamohara, O.; Artar, A.; Geisbert, T. W.; Connor, J. H.; Altug, H. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett. 2010, 10, 4962–4969.

26

Sannomiya, T.; Scholder, O.; Jefimovs, K.; Hafner, C.; Dahlin, A. B. Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications. Small 2011, 7, 1653–1663.

27

Nakamoto, K.; Kurita, R.; Niwa, O.; Fujii, T.; Nishida, M. Development of a mass-producible on-chip plasmonic nanohole array biosensor. Nanoscale 2011, 3, 5067–5075.

28

Caballero, B.; García-Martín, A.; Cuevas, J. C. Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors. ACS Photonics 2016, 3, 203–208.

29

Sharma, N.; Keshmiri, H.; Zhou, X. D.; Wong, T. I.; Petri, C.; Jonas, U.; Liedberg, B.; Dostalek, J. Tunable plasmonic nanohole arrays actuated by a thermoresponsive hydrogel cushion. J. Phys. Chem. C 2016, 120, 561–568.

30

Xiong, K. L.; Emilsson, G.; Dahlin, A. B. Biosensing using plasmonic nanohole arrays with small, homogenous and tunable aperture diameters. Analyst 2016, 141, 3803–3810.

31

Yao, J. M.; Stewart, M. E.; Maria, J.; Lee, T. W.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Seeing molecules by eye: Surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity. Angew. Chem., Int. Ed. 2008, 47, 5013–5017.

32

Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.

33

Gao, H. W.; Henzie, J.; Odom, T. W. Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett. 2006, 6, 2104–2108.

34

Delamarche, E.; Schmid, H.; Michel, B.; Biebuyck, H. Stability of molded polydimethylsiloxane microstructures. Adv. Mater. 1997, 9, 741–746.

35

Malyarchuk, V.; Hua, F.; Mack, N. H.; Velasquez, V. T.; White, J. O.; Nuzzo, R. G.; Rogers, J. A. High performance plasmonic crystal sensor formed by soft nanoimprint lithography. Opt. Express 2005, 13, 5669–5675.

36

Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 2010, 22, 4249–4269.

37

Murray-Méthot, M. P.; Ratel, M.; Masson, J. F. Optical properties of Au, Ag, and bimetallic Au on Ag nanohole arrays. J. Phys. Chem. C 2010, 114, 8268–8275.

38

Park, T. H.; Mirin, N.; Lassiter, J. B.; Nehl, C. L.; Halas, N. J.; Nordlander, P. Optical properties of a nanosized hole in a thin metallic film. ACS Nano 2008, 2, 25–32.

39

Degiron, A.; Lezec, H. J.; Barnes, W. L.; Ebbesen, T. W. Effects of hole depth on enhanced light transmission through subwavelength hole arrays. Appl. Phys. Lett. 2002, 81, 4327–4329.

40

Thio, T.; Ghaemi, H. F.; Lezec, H. J.; Wolff, P. A.; Ebbesen, T. W. Surface-plasmon-enhanced transmission through hole arrays in Cr films. J. Opt. Soc. Am. B 1999, 16, 1743–1748.

41

Zhang, J. H.; Chen, Z.; Wang, Z. L.; Zhang, W. Y.; Ming, N. B. Preparation of monodisperse polystyrene spheres in aqueous alcohol system. Mater. Lett. 2003, 57, 4466–4470.

42

Bukasov, R.; Shumaker-Parry, J. S. Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett. 2007, 7, 1113–1118.

43

Hicks, E. M.; Zhang, X. Y.; Zou, S. L.; Lyandres, O.; Spears, K. G.; Schatz, G. C.; van Duyne, R. P. Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography. J. Phys. Chem. B 2005, 109, 22351–22358.

44

Valsecchi, C.; Brolo, A. G. Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir 2013, 29, 5638–5649.

45

Sherry, L. J.; Chang, S. -H.; Schatz, G. C.; van Duyne. R. P.; Wiley, B. J.; Xia, Y. N. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 2005, 5, 2034–2038.

46

Nehl, C. L.; Liao, H. W.; Hafner, J. H. Optical properties of star-shaped gold nanoparticles. Nano Lett. 2006, 6, 683–688.

47

McFarland, A. D.; van Duyne, R. P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 2003, 3, 1057–1062.

48

Mock, J. J.; Smith, D. R.; Schultz, S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett. 2003, 3, 485–491.

49

Lisboa, P.; Valsesia, A.; Mannelli, I.; Mornet, S.; Colpo, P.; Rossi, F. Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols. Adv. Mater. 2008, 20, 2352–2358.

Nano Research
Pages 908-921
Cite this article:
Liu X, Liu W, Fang L, et al. Highly sensitive deep-silver-nanowell arrays (d-AgNWAs) for refractometric sensing. Nano Research, 2017, 10(3): 908-921. https://doi.org/10.1007/s12274-016-1348-7

591

Views

8

Crossref

N/A

Web of Science

9

Scopus

1

CSCD

Altmetrics

Received: 04 August 2016
Revised: 23 October 2016
Accepted: 28 October 2016
Published: 07 December 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return