Journal Home > Volume 10 , Issue 3

A highly efficient and selective bimetallic Pd0.88Co0.12 nanoparticle catalyst was developed for the direct N-formylation of amines by carbon monoxide. This catalyst is compatible with a wide range of substrates, affording various synthetically useful formamides under practical and mild reaction conditions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bimetallic PdCo catalyst for selective direct formylation of amines by carbon monoxide

Show Author's information Yifeng Chen1Junjie Mao2Rongan Shen2Dingsheng Wang2Qing Peng2Zhixin Yu3Huifang Guo1,( )Wei He1( )
School of Pharmaceutical SciencesTsinghua UniversityBeijing100084China
Department of ChemistryTsinghua UniversityBeijing100084China
Department of Petroleum EngineeringUniversity of StavangerStavanger4036Norway

Present address: Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China

Abstract

A highly efficient and selective bimetallic Pd0.88Co0.12 nanoparticle catalyst was developed for the direct N-formylation of amines by carbon monoxide. This catalyst is compatible with a wide range of substrates, affording various synthetically useful formamides under practical and mild reaction conditions.

Keywords: nanoparticle, carbon monoxide, bimetallic, amines, formylation

References(44)

1

Jackson, A.; Meth-Cohn, O. A new short and efficient strategy for the synthesis of quinolone antibiotics. J. Chem. Soc., Chem. Commun. 1995, 1319.

2

Chen, B. C.; Bendarz, M. S.; Zhao, R. L.; Sundeen, J. E.; Chen, P.; Shen, Z. Q.; Skoumbourdis, A. P.; Barrish, J. C. A new facile method for the synthesis of 1-arylimidazole-5-carboxylates. Tetrahedron Lett. 2000, 41, 5453–5456.

3

Kakehi, A.; Ito, S.; Hayashi, S.; Fujii, T. Preparation of new nitrogen-bridged heterocycles. 40. Synthesis of 1, 4-dihydropyrido[2, 3-b]indolizin-4-one derivatives. Bull. Chem. Soc. Jpn. 1995, 68, 3573–3580.

4

Lohray, B. B.; Baskaran, S.; Rao, B. S.; Reddy, B. Y.; Rao, I. N. A short synthesis of oxazolidinone derivatives linezolid and eperezolid: A new class of antibacterials. Tetrahedron Lett. 1999, 40, 4855–4856.

5

Pettit, G.; Kalnins, M.; Liu, T.; Thomas, E.; Parent, K. Notes—potential cancerocidal agents. Ⅲ. Formanilides. J. Org. Chem. 1961, 26, 2563–2566.

6

Kobayashi, S.; Nishio, K. Facile and highly stereoselective synthesis of homoallylic alcohols using organosilicon intermediates. J. Org. Chem. 1994, 59, 6620–6628.

7

Kobayashi, S.; Yasuda, M.; Hachiya, I. Trichlorosilane-dimethylformamide (Cl3SiH-DMF) as an efficient reducing agent. Reduction of aldehydes and imines and reductive amination of aldehydes under mild conditions using hypervalent hydridosilicates. Chem. Lett. 1996, 25, 407–408.

8

Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y. Asymmetric allylation with chiral formamide catalysts. Tetrahedron 1999, 55, 977–988.

9

Kraus, M. A. The formylation of aliphatic amines by dimethylformamide. Synthesis 1973, 361–362.

10

Kizuka, H.; Elmaleh, D. R. Selective monomethylation of the primary amine function using [11C]CH3I and the N-trifluoroacetyl derivative: Preparation of N-[11Cmethyl] chlorphentermine. Nucl. Med. Biol. 1993, 20, 239–242.

11

Downie, I. M.; Earle, M. J.; Heaney, H.; Shuhaibar, K. F. Vilsmeier formylation and glyoxylation reactions of nucleophilic aromatic compounds using pyrophosphoryl chloride. Tetrahedron 1993, 49, 4015–4034.

12

Hartinez, J.; Laur, J. Active esters of formic acid as useful formylating agents: Improvements in the synthesis of formyl-amino acid esters, N-a-formyl-Met-Leu-Phe-OH, and formyl-Met-Lys-Pro-Arg, a phagocytosis stimulating peptide. Synthesis 1982, 979–981.

13

Joulain, D. The composition of the headspace from fragrant flowers: Further results. Flavour Fragr. J. 1987, 2, 149–155.

14

Han, Y.; Cai, L. S. An efficient and convenient synthesis of formamidines. Tetrahedron Lett. 1997, 38, 5423–5426.

15

Sheehan, J. C.; Yang, D. D. H. The use of N-formylamino acids in peptide synthesis. J. Am. Chem. Soc. 1958, 80, 1154–1158.

16

Reddy, P. G.; Kumar, G. D. K.; Baskaran, S. A convenient method for the N-formylation of secondary amines and anilines using ammonium formate. Tetrahedron Lett. 2000, 41, 9149–9151.

17

Bandgar, B. P.; Kinkar, S. N.; Chobe, S. S.; Mandawad, G. G.; Yemul, O. S.; Dawane, B. S. Clean and green approach for N-formylation of amines using formic acid under neat reaction condition. Arch. Appl. Sci. Res. 2011, 3, 246–251.

18

Deutsch, J.; Eckelt, R.; Köckritz, A.; Martin, A. Catalytic reaction of methyl formate with amines to formamides. Tetrahedron 2009, 65, 10365–10369.

19

Das, V. K.; Devi, R. R.; Raul, P. K.; Thakur, A. J. Nano rod-shaped and reusable basic Al2O3 catalyst for N-formylation of amines under solvent-free conditions: A novel, practical and convenient "NOSE" approach. Green Chem. 2012, 14, 847–854.

20

Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. Homogeneous catalysis in supercritical fluids: Hydrogenation of supercritical carbon dioxide to formic acid, alkyl formates, and formamides. J. Am. Chem. Soc. 1996, 118, 344–355.

21

Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. A well-defined iron catalyst for the reduction of bicarbonates and carbon dioxide to formates, alkyl formates, and formamides. Angew. Chem., Int. Ed. 2010, 49, 9777–9780.

22

Jacquet, O.; Das Neves Gomes, C.; Ephritikhine, M.; Cantat, T. Recycling of carbon and silicon wastes: Room temperature formylation of N–H bonds using carbon dioxide and polymethylhydrosiloxane. J. Am. Chem. Soc. 2012, 134, 2934–2937.

23

Tlili, A.; Blondiaux, E.; Frogneux, X.; Cantat, T. Reductive functionalization of CO2 with amines: An entry to formamide, formamidine and methylamine derivatives. Green Chem. 2015, 17, 157–168.

24

Das, S.; Bobbink, F. D.; Bulut, S.; Soudani, M.; Dyson, P. J. Thiazolium carbene catalysts for the fixation of CO2 onto amines. Chem. Commun. 2016, 52, 2497–2500.

25

Choi, Y. S.; Shim, Y. N.; Lee, J.; Yoon, J. H.; Hong, C. S.; Cheong, M.; Kim, H. S.; Jang, H. G.; Lee, J. S. Ionic liquids as benign catalysts for the carbonylation of amines to formamides. Appl. Catal. A-Gen. 2011, 404, 87–92.

26

Süss-Fink, G.; Langenbahn, M.; Jenke, T. Rutheniumcluster als Katalysatoren für die Carbonylierung von cyclischen Aminen. J. Organomet. Chem. 1989, 368, 103–109.

27

Li, W. F.; Wu, X. F. A practical and general base-catalyzed carbonylation of amines for the synthesis of N-formamides. Chem. —Eur. J. 2015, 21, 14943–14948.

28

Shah, N.; Gravel, E.; Jawale, D. V.; Doris, E.; Namboothiri, I. N. N. Carbon nanotube–gold nanohybrid catalyzed Nformylation of amines by using aqueous formaldehyde. ChemCatChem 2014, 6, 2201–2205.

29

Saidi, O.; Bamford, M. J.; Blacker, A. J.; Lynch, J.; Marsden, S. P.; Plucinski, P.; Watson, R. J.; Williams, J. M. J. Iridium-catalyzed formylation of amines with paraformaldehyde. Tetrahedron Lett. 2010, 51, 5804–5806.

30

Ortega, N.; Richter, C.; Glorius, F. N-formylation of amines by methanol activation. Org. Lett. 2013, 15, 1776–1779.

31

Tanaka, S.; Minato, T.; Ito, E.; Hara, M.; Kim, Y.; Yamamoto, Y.; Asao, N. Selective aerobic oxidation of methanol in the coexistence of amines by nanoporous gold catalysts: Highly efficient synthesis of formamides. Chem. —Eur. J. 2013, 19, 11832–11836.

32

Kim, Y. J.; Lee, J. W.; Lee, H. J.; Zhang, S. Y.; Lee, J. S.; Cheong, M.; Kim, H. S. K3PO4-catalyzed carbonylation of amines to formamides. Appl. Catal. A: Gen. 2015, 506, 126–133.

33

Cui, X. J.; Zhang, Y.; Deng, Y. Q.; Shi, F. Amine formylation via carbon dioxide recycling catalyzed by a simple and efficient heterogeneous palladium catalyst. Chem. Commun. 2014, 50, 189–191.

34

Wu, Y. E.; Cai, S. F.; Wang, D. S.; He, W.; Li, Y. D. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. J. Am. Chem. Soc. 2012, 134, 8975–8981.

35

Cai, S. F.; Duan, H. H.; Rong, H. P.; Wang, D. S.; Li, L. S.; He, W.; Li, Y. D. Highly active and selective catalysis of bimetallic Rh3Ni1 nanoparticles in the hydrogenation of nitroarenes. ACS Catal. 2013, 3, 608–612.

36

Guo, H. F.; Yan, X. L.; Zhi, Y.; Li, Z. W.; Wu, C.; Zhao, C. L.; Wang, J.; Yu, Z. X.; Ding, Y.; He, W. et al. Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. Nano Res. 2015, 8, 1365–1372.

37

Wang, D. S.; Li, Y. D. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 2010, 132, 6280–6281.

38

Liu, D.; Guo, Q. H.; Hou, H. Q.; Niwa, O.; You, T. Y. PdxCoy nanoparticle/carbon nanofiber composites with enhanced electrocatalytic properties. ACS Catal. 2014, 4, 1825–1829.

39

Mora-Hernández, J. M.; Ezeta-Mejía, A.; Reza-San Germán, C.; Citalán-Cigarroa, S.; Arce-Estrada, E. M. Electrochemical activity towards ORR of mechanically alloyed PdCo supported on Vulcan carbon and carbon nanospheres. J. Appl. Electrochem. 2014, 44, 1307–1315.

40

Wang, Y.; Chen, Z.; Shen, R. A.; Cao, X.; Chen, Y. G.; Chen, C.; Wang, D. S.; Peng, Q.; Li, Y. D. Pd-dispersed CuS hetero-nanoplates for selective hydrogenation of phenylacetylene. Nano Res. 2016, 9, 1209–1219.

41

Meng, M.; Lin, P. Y.; Fu, Y. L. The catalytic removal of CO and NO over Co-Pt (Pd, Rh)/γ-Al2O3 catalysts and their structural characterizations. Catal. Lett. 1997, 48, 213–222.

42

Bernhard, P.; Ziethen, C.; Ohr, R.; Hilgers, H.; Schönhense, G. Investigations of the corrosion protection of ultrathin a-C and a-C: N overcoats for magnetic storage devices. Surf. Coat. Technol. 2004, 180–181, 621–626.

43

Wang, Y. F.; Xu, L. M.; Yu, R. C.; Chen, J. H.; Yang, Z. CoBr2–TMTU–zinc catalysed-Pauson–Khand reaction. Chem. Commun. 2012, 48, 8183–8185.

44

Tang, Y. F.; Deng, L. J.; Zhang, Y. D.; Dong, G. B.; Chen, J. H.; Yang, Z. Tetramethyl thiourea/Co2(CO)8-catalyzed Pauson-Khand reaction under balloon pressure of CO. Org. Lett. 2005, 7, 593–595.

File
nr-10-3-890_ESM.pdf (4.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 October 2016
Accepted: 19 October 2016
Published: 19 November 2016
Issue date: March 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

We acknowledge financial support from the China Ministry of Science and Technology (No. 2016YFA0202801), National Natural Science Foundation of China (No. 21371107), Tsinghua-Peking Joint Centers for Life Sciences and CAMS Initiative for Innovative Medicine (No. 2016-I2M-3-014).

Return