Journal Home > Volume 10 , Issue 3

Controlled integration of ultrafine metal nanoparticles (MNPs) and metal-organic frameworks (MOFs) has drawn much attention due to their unique physical and chemical properties. However, the development of a one-step strategy for preparing ultrafine MNPs within MOFs still remains a great challenge. Herein, a facile synthetic approach toward the abovementioned composites was developed. In contrast to the conventional approach, these hybrids were prepared by the direct mixing of metal and MOF precursors in the reaction solution assisted by microwave irradiation. Impressively, the Au/MOF-199 composite with uniformly distributed ultrafine Au nanoparticles could be fabricated in only two minutes, and the Au loading could be increased up to a level of 5.13%. The multifunctional Au/MOF-199 catalysts exhibited high turnover numbers (TONs) and turnover frequencies (TOFs) in the three-component coupling reaction of formaldehyde, phenylacetylene, and piperidine (A3-coupling). Owing to the confinement effect of MOF-199, the 5.13%Au/MOF-199 catalyst could be recycled for five runs without serious loss of activity, with no obvious aggregation of Au NPs detected.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Microwave-assisted synthesis of ultrafine Au nanoparticles immobilized on MOF-199 in high loading as efficient catalysts for a three-component coupling reaction

Show Author's information Yan Jiang1Xin Zhang1( )Xiaoping Dai1Wen Zhang1Qiang Sheng1Hongying Zhuo1Yun Xiao1Hai Wang2
State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 China
National Institute of Metrology Beijing 100013 China

Abstract

Controlled integration of ultrafine metal nanoparticles (MNPs) and metal-organic frameworks (MOFs) has drawn much attention due to their unique physical and chemical properties. However, the development of a one-step strategy for preparing ultrafine MNPs within MOFs still remains a great challenge. Herein, a facile synthetic approach toward the abovementioned composites was developed. In contrast to the conventional approach, these hybrids were prepared by the direct mixing of metal and MOF precursors in the reaction solution assisted by microwave irradiation. Impressively, the Au/MOF-199 composite with uniformly distributed ultrafine Au nanoparticles could be fabricated in only two minutes, and the Au loading could be increased up to a level of 5.13%. The multifunctional Au/MOF-199 catalysts exhibited high turnover numbers (TONs) and turnover frequencies (TOFs) in the three-component coupling reaction of formaldehyde, phenylacetylene, and piperidine (A3-coupling). Owing to the confinement effect of MOF-199, the 5.13%Au/MOF-199 catalyst could be recycled for five runs without serious loss of activity, with no obvious aggregation of Au NPs detected.

Keywords: high loading, microwave irradiation, MOF-199, ultrafine Au nanoparticles (NPs), A3-coupling

References(63)

1

Astruc, D.; Lu, F.; Aranzaes, J. R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem., Int. Ed. 2005, 44, 7852-7872.

2

Gao, C. B.; Lu, Z. D.; Liu, Y.; Zhang, Q.; Chi, M. F.; Cheng, Q.; Yin, Y. D. Highly stable silver nanoplates for surface plasmon resonance biosensing. Angew. Chem., Int. Ed. 2012, 51, 5629-5633.

3

Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025-1102.

4

Li, J.; Li, X.; Zhai,H.-J.; Wang,L.-S. Au20: A tetrahedral cluster. Science 2003, 299, 864-867.

5

Sinha, A. K.; Seelan, S.; Okumura, M.; Akita, T.; Tsubota, S.; Haruta, M. Three-dimensional mesoporous titanosilicates prepared by modified sol-gel method: Ideal gold catalyst supports for enhanced propene epoxidation. J. Phys. Chem. B 2005, 109, 3956-3965.

6

Hayashi, T.; Tanaka, K.; Haruta, M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal. 1998, 178, 566-575.

7

Haruta, M. When gold is not noble: Catalysis by nanoparticles. Chem. Rec. 2003, 3, 75-87.

8

Schmid, G.; Liu,Y.-P.; Schumann, M.; Raschke, T.; Radehaus, C. Quasi one-dimensional arrangements of Au55(PPh3)12Cl6 clusters and their electrical properties at room temperature. Nano Lett. 2001, 1, 405-407.

9

Tsunoyama, H.; Tsukuda, T. Magic numbers of gold clusters stabilized by PVP. J. Am. Chem. Soc. 2009, 131, 18216-18217.

10

Liu, X. Y.; Wang, A. Q.; Wang, X. D.; Mou,C.-Y.; Zhang, T. Au-Cu alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chem. Commun. 2008, 3187-3189.

11

Shekhar, M.; Wang, J.; Lee,W.-S.; Williams, W. D.; Kim, S. M.; Stach, E. A.; Miller, J. T.; Delgass, W. N.; Ribeiro, F. H. Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J. Am. Chem. Soc. 2012, 134, 4700-4708.

12

Lin, J.; Qiao, B. T.; Liu, J. Y.; Huang, Y. Q.; Wang, A. Q.; Li, L.; Zhang, W. S.; Allard, L. F.; Wang, X. D.; Zhang, T. Design of a highly active Ir/Fe(OH)x catalyst: Versatile application of Pt-group metals for the preferential oxidation of carbon monoxide. Angew. Chem., Int. Ed. 2012, 51, 2920-2924.

13

Zhang, X.; Corma, A. Supported gold(Ⅲ) catalysts for highly efficient three-component coupling reactions. Angew. Chem., Int. Ed. 2008, 120, 4430-4433.

14

Qiao, B. T.; Liang,J.-X.; Wang, A. Q.; Xu,C.-Q.; Li, J.; Zhang, T.; Liu, J. J. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 2015, 8, 2913-2924.

15

Li, Q. L.; Zhang, Y. H.; Chen, G. X.; Fan, J. Q.; Lan, H. Q.; Yang, Y. Q. Ultra-low-gold loading Au/CeO2 catalysts for ambient temperature CO oxidation: Effect of preparation conditions on surface composition and activity. J. Catal. 2010, 273, 167-176.

16

Gan, Y. J.; Sun, L. T.; Banhart, F. One- and two-dimensional diffusion of metal atoms in graphene. Small 2008, 4, 587-591.

17

Huang,Y.-B.; Wang, Q.; Liang, J.; Wang, X. S.; Cao, R. Soluble metal-nanoparticle-decorated porous coordination polymers for the homogenization of heterogeneous catalysis. J. Am. Chem. Soc. 2016, 138, 10104-10107.

18

Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 2008, 37, 191-214.

19

Long, J. R.; Yaghi, O. M. The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1213-1214.

20

Bae, Y. S.; Snurr, R. Q. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem., Int. Ed. 2011, 50, 11586-11596.

21

Getman, R. B.; Bae,Y.-S.; Wilmer, C. E.; Snurr, R. Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem. Rev. 2012, 112, 703-723.

22

Li,J.-R.; Sculley, J.; Zhou,H.-C. Metal-organic frameworks for separations. Chem. Rev. 2012, 112, 869-932.

23

Dhakshinamoorthy, A.; Garcia, H. Metal-organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chem. Soc. Rev. 2014, 43, 5750-5765.

24

Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 2008, 130, 6774-6780.

25

White, K. A.; Chengelis, D. A.; Gogick, K. A.; Stehman, J.; Rosi, N. L.; Petoud, S. Near-infrared luminescent lanthanide MOF barcodes. J. Am. Chem. Soc. 2009, 131, 18069-18071.

26

Jiang,H.-L.; Xu, Q. Porous metal-organic frameworks as platforms for functional applications. Chem. Commun. 2011, 47, 3351-3370.

27

Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem., Int. Ed. 2016, 128, 3749-3753.

28

Xiao, J. D.; Shang, Q. C.; Xiong, Y. J.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles: The platinum location matters. Angew. Chem., Int. Ed. 2016, 128, 9535-9539.

29

Hermes, S.; Schröter, M. K.; Schmid, R.; Khodeir, L.; Muhler, M.; Tissler, A.; Fischer, R. W.; Fischer, R. A. Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew. Chem., Int. Ed. 2005, 44, 6237-6241.

30

Schröder, F.; Esken, D.; Cokoja, M.; van den Berg, M. W. E.; Lebedev, O. I.; Van Tendeloo, G.; Walaszek, B.; Buntkowsky, G.; Limbach,H.-H.; Chaudret, B. et al. Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: A solid-state reference system for surfactant-stabilized ruthenium colloids. J. Am. Chem. Soc. 2008, 130, 6119-6130.

31

Ishida, T.; Kawakita, N.; Akita, T.; Haruta, M. One-pot N-alkylation of primary amines to secondary amines by gold clusters supported on porous coordination polymers. Gold Bull. 2009, 42, 267-274.

32

Ishida, T.; Nagaoka, M.; Akita, T.; Haruta, M. Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols. Chem. -Eur. J. 2008, 14, 8456-8460.

33

Jiang,H.-L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal−organic framework. J. Am. Chem. Soc. 2009, 131, 11302-11303.

34

Zlotea, C.; Campesi, R.; Cuevas, F.; Leroy, E.; Dibandjo, P.; Volkringer, C.; Loiseau, T.; Férey, G.; Latroche, M. Pd nanoparticles embedded into a metal-organic framework: Synthesis, structural characteristics, and hydrogen sorption properties. J. Am. Chem. Soc. 2010, 132, 2991-2997.

35

Jiang,H.-L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal−organic framework. J. Am. Chem. Soc. 2011, 133, 1304-1306.

36

Chui, S.S.-Y.; Lo, S.M.-F.; Charmant, J. P.; Orpen, A. G.; Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148-1150.

37

Liu, L. L.; Zhang, X.; Gao, J. S.; Xu, C. M. Engineering metal-organic frameworks immobilize gold catalysts for highly efficient one-pot synthesis of propargylamines. Green Chem. 2012, 14, 1710-1720.

38

Dahal, N.; García, S.; Zhou, J. P.; Humphrey, S. M. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis. ACS Nano 2012, 6, 9433-9446.

39

García, S.; Anderson, R. M.; Celio, H.; Dahal, N.; Dolocan, A.; Zhou, J. P.; Humphrey, S. M. Microwave synthesis of Au-Rh core-shell nanoparticles and implications of the shell thickness in hydrogenation catalysis. Chem. Commun. 2013, 49, 4241-4243.

40

Lu,C.-M.; Liu, J.; Xiao, K. F.; Harris, A. T. Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles. Chem. Eng. J. 2010, 156, 465-470.

41

Choi,J.-S.; Son,W.-J.; Kim, J.; Ahn,W.-S. Metal-organic framework MOF-5 prepared by microwave heating: Factors to be considered. Micropor. Mesopor. Mater. 2008, 116, 727-731.

42

Zhu, W.; Liu, P. J.; Xiao, S. N.; Wang, W. C.; Zhang, D. Q.; Li, H. X. Microwave-assisted synthesis of Ag-doped MOFs-like organotitanium polymer with high activity in visible-light driven photocatalytic NO oxidization. Appl. Catal. B 2015, 172-173, 46-51.

43

Bag, P. P.; Wang,X.-S.; Cao, R. Microwave-assisted large scale synthesis of lanthanide metal-organic frameworks (Ln-MOFs), having a preferred conformation and photoluminescence properties. Dalton Trans. 2015, 44, 11954-11962.

44

Huang,Y.-B.; Shen, M.; Wang, X. S.; Shi,P.-C.; Li, H. F.; Cao, R. Hierarchically micro-and mesoporous metal-organic framework-supported alloy nanocrystals as bifunctional catalysts: Toward cooperative catalysis. J. Catal. 2015, 330, 452-457.

45

Huang,Y.-B.; Shen, M.; Wang, X. S.; Huang, P.; Chen, R. P.; Lin,Z.-J.; Cao, R. Water-medium C-H activation over a hydrophobic perfluoroalkane-decorated metal-organic framework platform. J. Catal. 2016, 333, 1-7.

46

Casaletto, M. P.; Longo, A.; Martorana, A.; Prestianni, A.; Venezia, A. M. XPS study of supported gold catalysts: The role of Au0 and Au species as active sites. Surf. Interface Anal. 2006, 38, 215-218.

47

Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310-316.

48

Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850-13851.

49

Pastoriza-Santos, I.; Liz-Marzán, L. M. N, N-dimethylformamide as a reaction medium for metal nanoparticle synthesis. Adv. Funct. Mater. 2009, 19, 679-688.

50

Pearson, R. G. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. J. Chem. Educ. 1968, 45, 581-587.

51

Nag, A.; Kovalenko, M. V.; Lee,J.-S.; Liu, W. Y.; Spokoyny, B.; Talapin, D. V. Metal-free inorganic ligands for colloidal nanocrystals: S2−, HS, Se2−, HSe, Te2−, The, TeS32−, OH, and NH2 as surface ligands. J. Am. Chem. Soc. 2011, 133, 10612-10620.

52

Yen, B. K. H.; Günther, A.; Schmidt, M. A.; Jensen, K. F.; Bawendi, M. G. A microfabricated gas-liquid segmented flow reactor for high-temperature synthesis: The case of CdSe quantum dots. Angew. Chem., Int. Ed. 2005, 117, 5583-5587.

53

Yoo, Y.; Jeong,H.-K. Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition. Chem. Commun. 2008, 2441-2443.

54

Groisman, Y.; Gedanken, A. Continuous flow, circulating microwave system and its application in nanoparticle fabrication and biodiesel synthesis. J. Phys. Chem. C 2008, 112, 8802-8808.

55

Ni, Z.; Masel, R. I. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2006, 128, 12394-12395.

56

Baghbanzadeh, M.; Carbone, L.; Cozzoli, P. D.; Kappe, C. O. Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew. Chem., Int. Ed. 2011, 50, 11312-11359.

57

Boulton, A. A.; Davis, B. A.; Durden, D. A.; Dyck, L. E.; Juorio, A. V.; Li, X. M.; Paterson, I. A.; Yu, P. H. Aliphatic propargylamines: New antiapoptotic drugs. Drug Dev. Res. 1997, 42, 150-156.

DOI
58

Naota, T.; Takaya, H.; Murahashi,S.-I. Ruthenium-catalyzed reactions for organic synthesis. Chem. Rev. 1998, 98, 2599-2660.

59

Kidwai, M.; Bansal, V.; Kumar, A.; Mozumdar, S. The first Au-nanoparticles catalyzed green synthesis of propargylamines via a three-component coupling reaction of aldehyde, alkyne and amine. Green Chem. 2007, 9, 742-745.

60

Wei, C. M.; Li,C.-J. A highly efficient three-component coupling of aldehyde, alkyne, and amines via C-H activation catalyzed by gold in water. J. Am. Chem. Soc. 2003, 125, 9584-9585.

61

Liu,X.-Y.; Li,C.-H.; Che,C.-M. Phosphine gold(Ⅰ)-catalyzed hydroamination of alkenes under thermal and microwave-assisted conditions. Org. Lett. 2006, 8, 2707-2710.

62

Wei, C. M.; Li, Z. G.; Li,C.-J. The first silver-catalyzed three-component coupling of aldehyde, alkyne, and amine. Org. Lett. 2003, 5, 4473-4475.

63

Shi, L.; Tu,Y.-Q.; Wang, M.; Zhang,F.-M.; Fan,C.-A. Microwave-promoted three-component coupling of aldehyde, alkyne, and amine via C-H activation catalyzed by copper in water. Org. Lett. 2004, 6, 1001-1003.

File
nr-10-3-876_ESM.pdf (3.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 July 2016
Revised: 14 October 2016
Accepted: 19 October 2016
Published: 04 January 2017
Issue date: March 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21573286, 21173269, and 21572688), Ministry of Science and Technology of China (Nos. 2011BAK15B05 and 2015AA034603), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130007110003), and Science Foundation of China University of Petroleum, Beijing (No. 2462015YQ0304).

Return