Journal Home > Volume 10 , Issue 3

Paclitaxel (PTX), one of the most effective cytotoxins for the treatment of breast and lung cancer, is limited by its severe side effects and low tumor selectivity. In this work, hollow-poly(4-vinylpyridine) (hollow-p4VP) nanoparticles (NPs) have been used for the first time to generate PTX@p4VP NPs, employing a novel technique in which a gold core in the center of the NP is further oxidized to produce the hollow structure into which PTX molecules can be incorporated. The hollow-p4VP NPs exhibit good physicochemical properties and displayed excellent biocompatibility when tested on blood (no hemolysis) and cell cultures (no cytotoxicity). Interestingly, PTX@p4VP NPs significantly increased PTX cytotoxicity in human lung (A-549) and breast (MCF-7) cancer cells with a significant reduction of PTX IC50 (from 5.9 to 3.6 nM in A-549 and from 13.75 to 4.71 nM in MCF-7). In addition, PTX@p4VP caused a decrease in volume of A-549 and MCF-7 multicellular tumor spheroids (MTS), an in vitro system that mimics in vivo tumors, in comparison to free PTX. This increased antitumoral activity is accompanied by efficient cell internalization and increased apoptosis, especially in lung cancer MTS. Our results offer the first evidence that hollow-p4VP NPs can improve the antitumoral activity of PTX. This system can be used as a new nanoplatform to overcome the limitations of current breast and lung cancer treatments.


menu
Abstract
Full text
Outline
About this article

Paclitaxel-loaded hollow-poly(4-vinylpyridine) nanoparticles enhance drug chemotherapeutic efficacy in lung and breast cancer cell lines

Show Author's information Rafael Contreras-Cáceres1María C. Leiva2,3,4Raúl Ortiz2,5Amelia Díaz1Gloria Perazzoli2Miguel A. Casado-Rodríguez1Consolación Melguizo2,3,4Jose M. Baeyens6Juan M. López-Romero1,§Jose Prados2,3,4,§
Department of Organic Chemistry Faculty of Science University of Málaga 29071Málaga Spain
Institute of Biopathology and Regenerative Medicine (IBIMER) Center of Biomedical Research (CIBM) University of Granada 18100Granada Spain
Department of Anatomy and Embryology Faculty of Medicine University of Granada 18071Granada Spain
Biosanitary Institute of Granada (IBS. GRANADA) SAS-Universidad de Granada 18014Granada Spain
Department of Health Science University of Jaén 23071Jaén Spain
Department of Pharmacology Institute of Neuroscience, Biomedical Research Center (CIBM) University of Granada 18100Granada Spain

§ These authors contributed equally to this work.

Abstract

Paclitaxel (PTX), one of the most effective cytotoxins for the treatment of breast and lung cancer, is limited by its severe side effects and low tumor selectivity. In this work, hollow-poly(4-vinylpyridine) (hollow-p4VP) nanoparticles (NPs) have been used for the first time to generate PTX@p4VP NPs, employing a novel technique in which a gold core in the center of the NP is further oxidized to produce the hollow structure into which PTX molecules can be incorporated. The hollow-p4VP NPs exhibit good physicochemical properties and displayed excellent biocompatibility when tested on blood (no hemolysis) and cell cultures (no cytotoxicity). Interestingly, PTX@p4VP NPs significantly increased PTX cytotoxicity in human lung (A-549) and breast (MCF-7) cancer cells with a significant reduction of PTX IC50 (from 5.9 to 3.6 nM in A-549 and from 13.75 to 4.71 nM in MCF-7). In addition, PTX@p4VP caused a decrease in volume of A-549 and MCF-7 multicellular tumor spheroids (MTS), an in vitro system that mimics in vivo tumors, in comparison to free PTX. This increased antitumoral activity is accompanied by efficient cell internalization and increased apoptosis, especially in lung cancer MTS. Our results offer the first evidence that hollow-p4VP NPs can improve the antitumoral activity of PTX. This system can be used as a new nanoplatform to overcome the limitations of current breast and lung cancer treatments.

Keywords: lung cancer, breast cancer, paclitaxel, cytotoxicity, poly(4-vinylpyridine) (p4VP) nanoparticles, multicellular tumor spheroids

References(76)

1

Jordan, M. A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 2004, 4, 253-265.

2

Weaver, B. A. How taxol/paclitaxel kills cancer cells. Mol. Biol. Cell 2014, 25, 2677-2681.

3

Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A. Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer 2001, 37, 1590-1598.

4

Kundranda, M. N.; Niu, J. Albumin-bound paclitaxel in solid tumors: Clinical development and future directions. Drug Des. Devel. Ther. 2015, 9, 3767-3777.

5

Cerqueira, B. B. S.; Lasham, A.; Shelling, A. N.; Al-Kassas, R. Nanoparticle therapeutics: Technologies and methods for overcoming cancer. Eur. J. Pharm. Biopharm. 2015, 97, 140-151.

6

Pan, Y.; Gao, J. H.; Zhang, B.; Zhang, X. X.; Xu, B. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles. Langmuir 2010, 26, 4184-4187.

7

Wang, X. J.; Feng, J.; Bai, Y. C.; Zhang, Q.; Yin, Y. D. Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 2016, 116, 10983-11060.

8

Chen, Y.; Chen, Y. B.; Nan, J. Y.; Wang, C. P.; Chu, F. X. Hollow poly(N-isopropylacrylamide)-co-poly(acrylic acid) microgels with high loading capacity for drugs. J. Appl. Polym. Sci. 2012, 124, 4678-4685.

9

Xing, Z. M.; Wang, C. L.; Yan, J.; Zhang, L.; Li, L.; Zha, L. S. pH/temperature dual stimuli-responsive microcapsules with interpenetrating polymer network structure. Colloid Polym. Sci. 2010, 288, 1723-1729.

10

Singh, N.; Lyon, L. A. Au nanoparticle templated synthesis of pNIPAm nanogels. Chem. Mater. 2007, 19, 719-726.

11

Zhang, Y.; Jiang, M.; Zhao, J.; Ren, X.; Chen, D.; Zhang, G. A novel route to thermosensitive polymeric core-shell aggregates and hollow spheres in aqueous media. Adv. Funct. Mater. 2005, 15, 695-699.

12

Yu, J.; Hao, R.; Sheng, F. G.; Xu, L. L.; Li, G. J.; Hou, Y. L. Hollow manganese phosphate nanoparticles as smart multifunctional probes for cancer cell targeted magnetic resonance imaging and drug delivery. Nano Res. 2012, 5, 679-694.

13

Xing, R. J.; Bhirde, A. A.; Wang, S. J.; Sun, X. L.; Liu, G.; Hou, Y. L.; Chen, X. Y. Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. Nano Res. 2013, 6, 1-9.

14

Shen, J. M.; Yin, T.; Tian,X.-Z.; Gao,F.-Y.; Xu, S. Surface charge-switchable polymeric magnetic nanoparticles for the controlled release of anticancer drug. ACS Appl. Mater. Interfaces 2013, 5, 7014-7024.

15

Xu, Z. Y.; Zhu, S. J.; Wang, M. W.; Li, Y. J.; Shi, P.; Huang, X. Y. Delivery of paclitaxel using PEGylated graphene oxide as a nanocarrier. ACS Appl. Mater. Interfaces 2015, 7, 1355-1363.

16

Sun, Y. B.; Yu, B.; Wang, G. Y.; Wu, Y. S.; Zhang, X. M.; Chen, Y. M.; Tang, S. Q.; Yuan, Y.; Lee, R. J.; Teng, L. S. et al. Enhanced antitumor efficacy of vitamin E TPGS-emulsified PLGA nanoparticles for delivery of paclitaxel. Colloids Surf. B Biointerfaces 2014, 123, 716-723.

17

Yu, K. T.; Zhao, J. L.; Zhang, Z. K.; Gao, Y.; Zhou, Y. L.; Teng, L. S.; Li, Y. X. Enhanced delivery of paclitaxel using electrostatically-conjugated herceptin-bearing PEI/PLGA nanoparticles against HER-positive breast cancer cells. Int. J. Pharm. 2016, 497, 78-87.

18

Adesina, S. K.; Holly, A.; Kramer-Marek, G.; Capala, J.; Akala, E. O. Polylactide-based paclitaxel-loaded nanoparticles fabricated by dispersion polymerization: Characterization, evaluation in cancer cell lines, and preliminary biodistribution studies. J. Pharm. Sci. 2014, 103, 2546-2555.

19

Lee, K. S.; Chung, H. C.; Im, S. A.; Park, Y. H.; Kim, C. S.; Kim, S. B.; Rha, S. Y.; Lee, M. Y.; Ro, J. Multicenter phase II trial of genexol-PM, a cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res. Treat. 2008, 108, 241-250.

20

Ahn, H. K.; Jung, M.; Sym, S. J.; Shin, D. B.; Kang, S. M.; Kyung, S. Y.; Park, J. W.; Jeong, S. H.; Cho, E. K. A phase II trial of cremorphor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer. Cancer Chemoth. Pharm. 2014, 74, 277-282.

21

Shahin, M.; Ahmed, S.; Kaur, K.; Lavasanifar, A. Decoration of polymeric micelles with cancer-specific peptide ligands for active targeting of paclitaxel. Biomaterials 2011, 32, 5123-5133.

22

Shahin, M.; Lavasanifar, A. Novel self-associating poly(ethylene oxide)-b-poly(ε-caprolactone) based drug conjugates and nano-containers for paclitaxel delivery. Int. J. Pharm. 2010, 389, 213-222.

23

Zhang, L. H.; Zhu, D. W.; Dong, X.; Sun, H. F.; Song, C. X.; Wang, C.; Kong, D. L. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery. Int. J. Nanomedicine 2015, 10, 2101-2114.

24

Zhang, X. Y.; Zhang, Y. D. Enhanced antiproliferative and apoptosis effect of paclitaxel-loaded polymeric micelles against non-small cell lung cancers. Tumor Biol. 2015, 36, 4949-4959.

25

Zhu, Z. S.; Xie, C.; Liu, Q.; Zhen, X.; Zheng, X. C.; Wu, W.; Li, R. T.; Ding, Y.; Jiang, X. Q.; Liu, B. R. The effect of hydrophilic chain length and iRGD on drug delivery from poly(ε-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials 2011, 32, 9525-9535.

26

Huang,C.-Y.; Chen,C.-M.; Lee,Y.-D. Synthesis of high loading and encapsulation efficient paclitaxel-loaded poly(n-butyl cyanoacrylate) nanoparticles via miniemulsion. Int. J. Pharm. 2007, 338, 267-275.

27

He, M.; Zhao, Z. M.; Yin, L. C.; Tang, C.; Yin, C. H. Hyaluronic acid coated poly(butyl cyanoacrylate) nanoparticles as anticancer drug carriers. Int. J. Pharm. 2009, 373, 165-173.

28

Rezazadeh, M.; Emami, J.; Hasanzadeh, F.; Sadeghi, H.; Minaiyan, M.; Mostafavi, A.; Rostami, M.; Lavasanifar, A. In vivo pharmacokinetics, biodistribution and anti-tumor effect of paclitaxel-loaded targeted chitosan-based polymeric micelle. Drug Deliv. 2016, 23, 1707-1717.

29

Park, J. S.; Han, T. H.; Lee, K. Y.; Han, S. S.; Hwang, J. J.; Moon, D. H.; Kim, S. Y.; Cho, Y. W. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: Endocytosis, exocytosis and drug release. J. Control. Release 2006, 115, 37-45.

30

Hu,F.-Q.; Ren,G.-F.; Yuan, H.; Du,Y.-Z.; Zeng, S. Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloid Surf. B Biointerfaces 2006, 50, 97-103.

31

Tripodo, G.; Trapani, A.; Torre, M. L.; Giammona, G.; Trapani, G.; Mandracchia, D. Hyaluronic acid and its derivatives in drug delivery and imaging: Recent advances and challenges. Eur. J. Pharm. Biopharm. 2015, 97, 400-416.

32

Liu, Y. Y.; Mei, L.; Yu, Q. W.; Xu, C. Q.; Qiu, Y.; Yang, Y. T.; Shi, K. R.; Zhang, Q. Y.; Gao, H. L.; Zhang, Z. R. et al. Multifunctional tandem peptide modified paclitaxel-loaded liposomes for the treatment of vasculogenic mimicry and cancer stem cells in malignant glioma. ACS Appl. Mater. Interfaces 2015, 7, 16792-16801.

33

Wu, P. Y.; Liu, Q.; Li, R. T.; Wang, J.; Zhen, X.; Yue, G. F.; Wang, H. Y.; Cui, F. B.; Wu, F. L.; Yang, M. et al. Facile preparation of paclitaxel loaded silk fibroin nanoparticles for enhanced antitumor efficacy by locoregional drug delivery. ACS Appl. Mater. Interfaces 2013, 5, 12638-12645.

34

Socinski, M. A.; Bondarenko, I.; Karaseva, N. A.; Makhson, A. M.; Vynnychenko, I.; Okamoto, I.; Hon, J. K.; Hirsh, V.; Bhar, P.; Zhang, H. et al. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: Final results of a phase III trial. J. Clin. Oncol. 2012, 30, 2055-2062.

35

Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, 1953.

36

Contreras-Cáceres, R.; Pacifico, J.; Pastoriza-Santos, I.; Pérez-Juste, J.; Fernández-Barbero, A.; Liz-Marzán, L. M. Au@pNIPAM thermosensitive nanostructures: Control over shell cross-linking, overall dimensions, and core growth. Adv. Funct. Mater. 2009, 19, 3070-3076.

37

Rodríguez-Fernández, J.; Pérez-Juste, J.; García de Abajo, F. J.; Liz-Marzán, L. M. Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir 2006, 22, 7007-7010.

38

Contreras-Cáceres, R.; Pastoriza-Santos, I.; Álvarez-Puebla, R. A.; Pérez-Juste, J.; Fernández-Barbero, A.; Liz-Marzán, L. M. Growing Au/Ag nanoparticles within microgel colloids for improved surface-enhanced Raman scattering detection. Chem. -Eur. J. 2010, 16, 9462-9467.

39

Rodríguez-Fernández, J.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. Spatially-directed oxidation of gold nanoparticles by Au(Ⅲ)-CTAB complexes. J. Phys. Chem. B 2005, 109, 14257-14261.

40

Hou, D. Z.; Xie, C. S.; Huang, K. J.; Zhu, C. H. The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials 2003, 24, 1781-1785.

41

Sadeghi-Aliabadi, H.; Asghari, G.; Mostafavi, S. A.; Esmaeili, A. Solvent optimization on Taxol extraction from Taxus baccata L., using HPLC and LC-MS. DARU 2009, 17, 192-198.

42

Evans, B. C.; Nelson, C. E.; Yu, S. S.; Beavers, K. R.; Kim, A. J.; Li, H. M.; Nelson, H. M.; Giorgio, T. D.; Duvall, C. L. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J. Vis. Exp. 2013, e50166.

43

Melguizo, C.; Cabeza, L.; Prados, J.; Ortiz, R.; Caba, O.; Rama, A. R.; Delgado, Á. V.; Arias, J. L. Enhanced antitumoral activity of doxorubicin against lung cancer cells using biodegradable poly(butylcyanoacrylate) nanoparticles. Drug Des. Devel. Ther. 2015, 9, 6433-6444.

44

Ortiz, R.; Cabeza, L.; Arias, J. L.; Melguizo, C.; Álvarez, P. J.; Vélez, C.; Clares, B.; Áranega, A.; Prados, J. Poly(butylcyanoacrylate) and poly(ε-caprolactone) nanoparticles loaded with 5-fluorouracil increase the cytotoxic effect of the drug in experimental colon cancer. AAPS J. 2015, 17, 918-929.

45

Prados, J.; Melguizo, C.; Rama, A. R.; Ortiz, R.; Segura, A.; Boulaiz, H.; Vélez, C.; Caba, O.; Ramos, J. L.; Aránega, A. Gef gene therapy enhances the therapeutic efficacy of doxorubicin to combat growth of MCF-7 breast cancer cells. Cancer Chemother. Pharmacol. 2010, 66, 69-78.

46

Ho, W. Y.; Yeap, S. K.; Ho, C. L.; Rahim, R. A.; Alitheen, N. B. Development of multicellular tumor spheroid (MCTS) culture from breast cancer cell and a high throughput screening method using the MTT assay. PLoS One 2012, 7, e44640.

47

Contreras-Cáceres, R.; Schellkopf, L.; Fernández-López, C.; Pastoriza-Santos, I.; Pérez-Juste, J.; Stamm, M. Effect of the cross-linking density on the thermoresponsive behavior of hollow PNIPAM microgels. Langmuir 2015, 31, 1142-1149.

48

Crassous, J. J.; Ballauff, M.; Drechsler, M.; Schmidt, J.; Talmon, Y. Imaging the volume transition in thermosensitive core-shell particles by cryo-transmission electron microscopy. Langmuir 2006, 22, 2403-2406.

49

Tokareva, I.; Minko, S.; Fendler, J. H.; Hutter, E. Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J. Am. Chem. Soc. 2004, 126, 15950-15951.

50

Ling, J.; Weitman, S. D.; Miller, M. A.; Moore, R. V.; Bovik, A. C. Direct Raman imaging techniques for study of the subcellular distribution of a drug. Appl. Opt. 2002, 41, 6006-6017.

51

Kato, Y.; Ozawa, S.; Miyamoto, C.; Maehata, Y.; Suzuki, A.; Maeda, T.; Baba, Y. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013, 13, 89.

52

Gao, W. W.; Chan, J. M.; Farokhzad, O. C. pH-responsive nanoparticles for drug delivery. Mol. Pharm. 2010, 7, 1913-1920.

53

Narayanan, S.; Pavithran, M.; Viswanath, A.; Narayanan, D.; Mohan, C. C.; Manzoor, K.; Menon, D. Sequentially releasing dual-drug-loaded PLGA-casein core/shell nanomedicine: Design, synthesis, biocompatibility and pharmacokinetics. Acta Biomater. 2014, 10, 2112-2124.

54

Jain, V.; Swarnakar, N. K.; Mishra, P. R.; Verma, A.; Kaul, A.; Mishra, A. K.; Jain, N. K. Paclitaxel loaded PEGylated gleceryl monooleate based nanoparticulate carriers in chemotherapy. Biomaterials 2012, 33, 7206-7220.

55

Lu, J. K.; Chuan, X. X.; Zhang, H.; Dai, W. B.; Wang, X. L.; Wang, X. Q.; Zhang, Q. Free paclitaxel loaded PEGylated-paclitaxel nanoparticles: Preparation and comparison with other paclitaxel systems in vitro and in vivo. Int. J. Pharm. 2014, 471, 525-535.

56

Jones, A. T.; Gumbleton, M.; Duncan, R. Understanding endocytic pathways and intracellular trafficking: A prerequisite for effective design of advanced drug delivery systems. Adv. Drug Deliv. Rev. 2003, 55, 1353-1357.

57

Harush-Frenkel, O.; Debotton, N.; Benita, S.; Altschuler, Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem. Biophys. Res. Commun. 2007, 353, 26-32.

58

Iversen,T.-G.; Skotland, T.; Sandvig, K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 2011, 6, 176-185.

59

Ozay, O.; Akcali, A.; Otkun, M. T.; Silan, C.; Aktas, N.; Sahiner, N. P(4-VP) based nanoparticles and composites with dual action as antimicrobial materials. Colloids Surf. B Biointerfaces 2010, 79, 460-466.

60

Sahiner, N.; Yasar, A. O. The generation of desired functional groups on poly(4-vinyl pyridine) particles by post-modification technique for antimicrobial and environmental applications. J. Colloid Interf. Sci. 2013, 402, 327-333.

61

Silan, C.; Akcali, A.; Otkun, M. T.; Ozbey, N.; Butun, S.; Ozay, O.; Sahiner, N. Novel hydrogel particles and their IPN films as drug delivery systems with antibacterial properties. Colloids Surf. B Biointerfaces 2012, 89, 248-253.

62

Wu, C. L.; Wang, X.; Zhao, L. Z.; Gao, Y. H.; Ma, R. J.; An, Y. L.; Shi, L. Q. Facile strategy for synthesis of silica/polymer hybrid hollow nanoparticles with channels. Langmuir 2010, 26, 18503-18507.

63

Mittapalli, R. K.; Liu, X. L.; Adkins, C. E.; Nounou, M. I.; Bohn, K. A.; Terrell, T. B.; Qhattal, H. S.; Geldenhuys, W. J.; Palmieri, D.; Steeg, P. S. et al. Paclitaxel-hyaluronic nanoconjugates prolong overall survival in a preclinical brain metastases of breast cancer model. Mol. Cancer Ther. 2013, 12, 2389-2399.

64

Zhuang, Y. G.; Xu, B.; Huang, F.; Wu, J. J.; Chen, S. Solid lipid nanoparticles of anticancer drugs against MCF-7 cell line and a murine breast cancer model. Pharmazie 2012, 67, 925-929.

65

López-Gasco, P.; Iglesias, I.; Benedí, J.; Lozano, R.; Teijón, J. M.; Blanco, M. D. Paclitaxel-loaded polyester nanoparticles prepared by spray-drying technology: In vitro bioactivity evaluation. J. Microencapsul. 2011, 28, 417-429.

66

López-Gasco, P.; Iglesias, I.; Benedí, J.; Lozano, R.; Blanco, M. D. Characterization and in-vitro bioactivity evaluation of paclitaxel-loaded polyester nanoparticles. Anticancer Drugs 2012, 23, 947-958.

67

Bernabeu, E.; Helguera, G.; Legaspi, M. J.; Gonzalez, L.; Hocht, C.; Taira, C.; Chiappetta, D. A. Paclitaxel-loaded PCL-TPGS nanoparticles: In vitro and in vivo performance compared with Abraxane®. Colloids Surf. B Biointerfaces 2014, 113, 43-50.

68

Sahoo, S. K.; Parveen, S.; Panda J. J. The present and future of nanotechnology in human health care. Nanomedicine 2007, 3, 20-31.

69

Iyer A, K.; Singh, A.; Ganta, S.; Amiji, M. M. Role of integrated cancer nanomedicine in overcoming drug resistance. Adv. Drug Deliv. Rev. 2013, 65, 1784-1802.

70

Jamieson, L. E.; Harrison, D. J.; Campbell, C. J. Chemical analysis of multicellular tumour spheroids. Analyst 2015, 140, 3910-3920.

71

Kang, A.; Seo, H. I.; Chung, B. G.; Lee, S. H. Concave microwell array-mediated three-dimensional tumor model for screening anticancer drug-loaded nanoparticles. Nanomedicine 2015, 11, 1153-1161.

72

Jiang, X. Y.; Xin, H. L.; Gu, J. J.; Du, F. Y.; Feng, C. L.; Xie, Y. K.; Fang, X. L. Enhanced antitumor efficacy by D-glucosamine-functionalized and paclitaxel-loaded poly(ethylene glycol)-co-poly(trimethylene carbonate) polymer nanoparticles. J. Pharm. Sci. 2014, 103, 1487-1496.

73

Yao, H. J.; Ju, R. J.; Wang, X. X.; Zhang, Y.; Li, R. J.; Yu, Y.; Zhang, L.; Lu, W. L. The antitumor efficacy of functional paclitaxel nanomicelles in treating resistant breast cancers by oral delivery. Biomaterials 2011, 32, 3285-3302.

74

Yang,T.-M.; Barbone, D.; Fennell, D. A.; Broaddus, V. C. Bcl-2 family proteins contribute to apoptotic resistance in lung cancer multicellular spheroids. Am. J. Respir. Cell Mol. Biol. 2009, 41, 14-23.

75

Lovitt, C. J.; Shelper, T. B.; Avery, V. M. Evaluation of chemotherapeutics in a three-dimensional breast cancer model. J. Cancer Res. Clin. Oncol. 2015, 141, 951-959.

76

Zhou, Q.; Ching, A. K.; Leung, W. K.; Szeto, C. Y.; Ho, S. M.; Chan, P. K.; Yuan, Y. F.; Lai, P. B.; Yeo, W.; Wong, N. Novel therapeutic potential in targeting microtubules by nanoparticle albumin-bound paclitaxel in hepatocellular carcinoma. Int. J. Oncol. 2011, 38, 721-731.

Publication history
Copyright
Acknowledgements

Publication history

Received: 28 June 2016
Revised: 18 October 2016
Accepted: 19 October 2016
Published: 20 January 2017
Issue date: March 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This research was funded by FEDER, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I+D+i), by the Consejería de Salud de la Junta de Andalucía through projects (Nos. PI-0476-2016 and P11-CTS-7649). We also thank the financial support of CICYT, Spain, Project CTQ13-48418-P, FEDER funds. R. C.-C. acknowledges the Andalucía Tech program "U-mobility" co-financed by the University of Málaga and the European Community's Seventh Framework Program (No. 246550). We thank the research grant (FPU) from Ministerio de Educacion Cultura y Deporte.

Return