Journal Home > Volume 10 , Issue 3

Hepatocellular carcinoma (HCC) is one of the most common and deadly malignancies worldwide. To date, the survival of patients with HCC has not improved because of the insensitivity of HCC to conventional treatments. Sonodynamic therapy (SDT) is a promising new approach that shows remarkable potential in the treatment of HCC. Here, we designed a simple, biocompatible, and multifunctional nanosystem that combines SDT and chemotherapy to treat HCC. This nanosystem, called HPDF nanoparticles, had a core-shell structure in which hematoporphyrin (HP) was complexed with doxorubicin (DOX) to form the hydrophobic core and the surface was coated with Pluronic F68 to form the hydrophilic shell. In HCC cells, HPDF nanoparticles in combination with ultrasonic irradiation (1.0 MHz, 1.5 W/cm2, 30 s) exhibited potent cytotoxicity, resulting from the synergistic effects of a large amount of reactive oxygen species generated from HP and DOX-induced DNA damage. Notably, HPDF nanoparticles in combination with ultrasonic irradiation significantly reversed drug resistance in Nanog-positive cancer stem cells (CSCs) in HCC. In nude mice bearing HCC tumors, HPDF nanoparticles efficiently accumulated in the tumors and reached the maximum levels within 6-8 h, post intravenous injection. HPDF nanoparticles, in combination with ultrasonic irradiation (1.0 MHz, 3 W/cm2, 5 min), suppressed tumor growth, angiogenesis, and collagen deposition, considerably. In summary, our results show that HPDF nanoparticles can effectively combine SDT and chemotherapy to inhibit HCC growth and progression through multiple mechanisms in both cellular and animal models.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A multifunctional nanoparticle system combines sonodynamic therapy and chemotherapy to treat hepatocellular carcinoma

Show Author's information Yang Liu1,2,§Guoyun Wan2,§Hua Guo1Yuanyuan Liu2Ping Zhou1,2Hemei Wang2Dan Wang2Sipei Zhang2Yinsong Wang2( )Ning Zhang1,2( )
Cancer Institute and Hospital National Clinical Research Center for Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin Medical University Tianjin 300060 China
Research Center of Basic Medical Science & School of Pharmacy Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics) Tianjin Medical University Tianjin 300070 China

§ These authors contributed equally to this work.

Abstract

Hepatocellular carcinoma (HCC) is one of the most common and deadly malignancies worldwide. To date, the survival of patients with HCC has not improved because of the insensitivity of HCC to conventional treatments. Sonodynamic therapy (SDT) is a promising new approach that shows remarkable potential in the treatment of HCC. Here, we designed a simple, biocompatible, and multifunctional nanosystem that combines SDT and chemotherapy to treat HCC. This nanosystem, called HPDF nanoparticles, had a core-shell structure in which hematoporphyrin (HP) was complexed with doxorubicin (DOX) to form the hydrophobic core and the surface was coated with Pluronic F68 to form the hydrophilic shell. In HCC cells, HPDF nanoparticles in combination with ultrasonic irradiation (1.0 MHz, 1.5 W/cm2, 30 s) exhibited potent cytotoxicity, resulting from the synergistic effects of a large amount of reactive oxygen species generated from HP and DOX-induced DNA damage. Notably, HPDF nanoparticles in combination with ultrasonic irradiation significantly reversed drug resistance in Nanog-positive cancer stem cells (CSCs) in HCC. In nude mice bearing HCC tumors, HPDF nanoparticles efficiently accumulated in the tumors and reached the maximum levels within 6-8 h, post intravenous injection. HPDF nanoparticles, in combination with ultrasonic irradiation (1.0 MHz, 3 W/cm2, 5 min), suppressed tumor growth, angiogenesis, and collagen deposition, considerably. In summary, our results show that HPDF nanoparticles can effectively combine SDT and chemotherapy to inhibit HCC growth and progression through multiple mechanisms in both cellular and animal models.

Keywords: nanoparticle, chemotherapy, sonodynamic therapy, hepatocellular carcinoma, combination treatment

References(41)

1

Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D. M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359-E386.

2

Forner, A.; Llovet, J. M.; Bruix, J. Hepatocellular carcinoma. Lancet 2012, 379, 1245-1255.

3

Xu, J.; Shen, Z. Y.; Chen, X. G.; Zhang, Q.; Bian, H. J.; Zhu, P.; Xu, H. Y.; Song, F.; Yang, X. M.; Mi, L. et al. A randomized controlled trial of licartin for preventing hepatoma recurrence after liver transplantation. Hepatology 2007, 45, 269-276.

4

Ho, S.; Lau, W. Y.; Leung, T. W. T.; Johnson, P. J. Internal radiation therapy for patients with primary or metastatic hepatic cancer: A review. Cancer 1998, 83, 1894-1907.

DOI
5

Cabibbo, G.; Enea, M.; Attanasio, M.; Bruix, J.; Craxi, A.; Cammà, C. A meta-analysis of survival rates of untreated patients in randomized clinical trials of hepatocellular carcinoma. Hepatology 2010, 51, 1274-1283.

6

Bruix, J.; Takayama, T.; Mazzaferro, V.; Chau, G. Y.; Yang, J. M.; Kudo, M.; Cai, J. Q.; Poon, R. T.; Han, K. H.; Tak, W. Y. et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): A phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2015, 16, 1344-1354.

7

Kaseb, A. O.; Hanbali, A.; Cotant, M.; Hassan, M. M.; Wollner, I.; Philip, P. A. Vascular endothelial growth factor in the management of hepatocellular carcinoma: A review of literature. Cancer 2009, 115, 4895-4906.

8

Prieto, J.; Melero, I.; Sangro, B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 681-700.

9

Kennedy, J. E. High-intensity focused ultrasound in the treatment of solid tumours. Nat. Rev. Cancer 2005, 5, 321-327.

10

Zhou, Y. F. High intensity focused ultrasound in clinical tumor ablation. World J. Clin. Oncol. 2011, 2, 8-27.

11

Zhou, Y.; Wang, Z. G.; Chen, Y.; Shen, H. X.; Luo, Z. C.; Li, A.; Wang, Q.; Ran, H. T.; Li, P.; Song, W. X. et al. Microbubbles from gas-generating perfluorohexanenanoemulsions for targeted temperature-sensitive ultrasonography and synergistic HIFU ablation of tumors. Adv. Mater. 2013, 25, 4123-4130.

12

Chen, B.; Zheng, R. N.; Liu, D.; Li, B. F.; Lin, J. R.; Zhang, W. M. The tumor affinity of chlorin e6 and its sonodynamic effects on non-small cell lung cancer. Ultrason. Sonochem. 2013, 20, 667-673.

13

Yumita, N.; Nishigaki, R.; Umemura, K.; Umemura, S. Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound. Jpn. J. Cancer Res. 1989, 80, 219-222.

14

Tachibana, K.; Feril, L. B.; Ikeda-Dantsuji, Y. Sonodynamic therapy. Ultrasonics 2008, 48, 253-259.

15

Yamaguchi, S.; Kobayashi, H.; Narita, T.; Kanehira, K.; Sonezaki, S.; Kudo, N.; Kubota, Y.; Terasaka, S.; Houkin, K. Sonodynamic therapy using water-dispersed TiO2-polyethylene glycol compound on glioma cells: Comparison of cytotoxic mechanism with photodynamic therapy. Ultrason. Sonochem. 2011, 18, 1197-1204.

16

Tachibana, K.; Sugata, K.; Meng, J.; Okumura, M.; Tachibana, S. Liver tissue damage by ultrasound in combination with the photosensitizing drug, Photofrin II. Cancer Lett. 1994, 78, 177-181.

17

Osaki, T.; Yokoe, I.; Uto, Y.; Ishizuka, M.; Tanaka, T.; Yamanaka, N.; Kurahashi, T.; Azuma, K.; Murahata, Y.; Tsuka, T. et al. Bleomycin enhances the efficacy of sonodynamic therapy using aluminum phthalocyanine disulfonate. Ultrason. Sonochem. 2016, 28, 161-168.

18

Xu, Z. Y.; Wang, K.; Li, X. Q.; Chen, S.; Deng, J. M.; Cheng, Y.; Wang, Z. G. The ABCG2 transporter is a key molecular determinant of the efficacy of sonodynamic therapy with photofrin in glioma stem-like cells. Ultrasonics 2013, 53, 232-238.

19

Kabanov, A. V.; Batrakova, E. V.; Alakhov, V. Y. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control. Release 2002, 82, 189-212.

20

Batrakova, E. V.; Kabanov, A. V. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release 2008, 130, 98-106.

21

Kabanov, A. V.; Batrakova, E. V.; Alakhov, V. Y. An essential relationship between ATP depletion and chemosensitizing activity of Pluronic block copolymers. J. Control. Release 2003, 91, 75-83.

22

Zhu, S. J.; Qian, L. L.; Hong, M. H.; Zhang, L. H.; Pei, Y. Y.; Jiang, Y. Y. RGD-modified PEG-PAMAM-DOX conjugate: In vitro and in vivo targeting to both tumor neovascular endothelial cells and tumor cells. Adv. Mater. 2011, 23, H84-H89.

23

Ren, Y.; Wang, R. R.; Liu, Y.; Guo, H.; Zhou, X.; Yuan, X. B.; Liu, C. Y.; Tian, J. G.; Yin, H. F.; Wang, Y. S. et al. A hematoporphyrin-based delivery system for drug resistance reversal and tumor ablation. Biomaterials 2014, 35, 2462-2470.

24

Wagner, B. A.; Evig, C. B.; Reszka, K. J.; Buettner G. R.; Burns, C. P. Doxorubicin increases intracellular hydrogen peroxide in PC3 prostate cancer cells. Arch. Biochem. Biophys. 2005, 440, 181-190.

25

Chang, Y. L.; Yang, S. T.; Liu, J. H.; Dong, E.; Wang, Y. W.; Cao, A. N.; Liu, Y. F.; Wang, H. F. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett. 2011, 200, 201-210.

26

McEwan, C.; Owen, J.; Stride, E.; Fowley, C.; Nesbitt, H.; Cochrane, D.; Coussios, C. C.; Borden, M.; Nomikou, N.; McHale, A. P. et al. Oxygen carrying microbubbles for enhanced sonodynamic therapy of hypoxic tumours. J. Control. Release 2015, 203, 51-56.

27

Zheng, T. S.; Hunot, S.; Kuida, K.; Momoi, T.; Srinivasan, A.; Nicholson, D. W.; Lazebnik, Y.; Flavell, R. A. Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nat. Med. 2000, 6, 1241-1247.

28

Lowe, S. W.; Ruley, H. E.; Jacks, T.; Housman, D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993, 74, 957-967.

29

Shinohara, A.; Ogawa, H.; Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 1992, 69, 457-470.

30

Li, Q.; Wang, X.; Zhang, K.; Li, X.; Liu, Q.; Wang, P. DNA damage and cell cycle arrest induced by protoporphyrin IX in sarcoma 180 cells. Cell Physiol. Biochem. 2013, 32, 778-788.

31

Tang, W.; Fan, W. Y.; Liu, Q. H.; Zhang, J.; Qin, X. F. The role of p53 in the response of tumor cells to sonodynamic therapy in vitro. Ultrasonics 2011, 51, 777-785.

32

Gupta, P. B.; Chaffer, C. L.; Weinberg, R. A. Cancer stem cells: Mirage or reality? Nat. Med. 2009, 15, 1010-1012.

33

Shackleton, M.; Quintana, E.; Fearon, E. R.; Morrison, S. J. Heterogeneity in cancer: Cancer stem cells versus clonal evolution. Cell 2009, 138, 822-829.

34

Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer 2005, 5, 275-284.

35

Alakhova, D. Y.; Rapoport, N. Y.; Batrakova, E. V.; Timoshin, A. A.; Li, S.; Nicholls, D.; Alakhov, V. Y.; Kabanov, A. V. Differential metabolic responses to pluronic in MDR and non-MDR cells: Anovel pathway for chemosensitization of drug resistant cancers. J. Control. Release 2010, 142, 89-100.

36

Shan, J. J.; Shen, J. J.; Liu, L. M.; Xia, F.; Xu, C.; Duan, G. J.; Xu, Y. M.; Ma, Q. H., Yang, Z.; Zhang, Q. Z. et al. Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology 2012, 56, 1004-1014.

37

Gao, Z. X. Z.; Zheng, J. H.; Yang, B.; Wang, Z.; Fan, H. X.; Lv, Y. H.; Li, H. X.; Jia, L. M.; Cao, W. W. Sonodynamic therapy inhibits angiogenesis and tumor growth in a xenograft mouse model. Cancer Lett. 2013, 335, 93-99.

38

Levental, K. R.; Yu, H. M.; Kass, L.; Lakins, J. N.; Egeblad, M.; Erler, J. T.; Fong, S. F. T.; Csiszar, K.; Giaccia, A.; Weninger, W. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009, 139, 891-906.

39

Iyengar, P.; Espina, V.; Williams, T. W.; Lin, Y.; Berry, D.; Jelicks, L. A.; Lee, H.; Temple, K.; Graves, R.; Pollard, J. et al. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J. Clin. Invest. 2005, 115, 1163-1176.

40

Clarke, M. F.; Fuller, M. Stem cells and cancer: Two faces of Eve. Cell 2006, 124, 1111-1115.

41

Fang, M.; Yuan, J. P.; Peng, C. W.; Li, Y. Collagen as a double-edged sword in tumor progression. Tumor Biol. 2014, 35, 2871-2882.

File
nr-10-3-834_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 June 2016
Revised: 17 October 2016
Accepted: 19 October 2016
Published: 10 January 2017
Issue date: March 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 81573005, 81371671, and 81472683) and the National High-tech R&D Program of China (863 Program, No. 2015AA020403). The authors thank Prof. C. Qian (Third Military Medical University, Chongqing, China) for providing NanogPos CSCs and NanogNeg cells.

Return