Journal Home > Volume 10 , Issue 2

In this work, single- and double-shelled NiCo2O4 hollow spheres have been synthesized in situ by a one-pot solvothermal method assisted by xylose, followed by heat treatment. Employed as supercapacitor electrode materials, the double-shelled NiCo2O4 hollow spheres exhibit a remarkable specific capacitance (1, 204.4 F·g-1 at a current density of 2.0 A·g-1) and excellent cycling stability (103.6% retention after 10, 000 cycles at a current density of 10 A·g-1). Such outstanding electrochemical performance can be attributed to their unique internal morphology, which provides a higher surface area with a larger number of active sites available to interact with the electrolyte. The versatility of this method was demonstrated by applying it to other binary metal oxide materials, such as ZnCo2O4, ZnMn2O4, and CoMn2O4. The present study thus illustrates a simple and general strategy for the preparation of binary transition metal oxide hollow spheres with a controllable number of shells. This approach shows great promise for the development of next-generation high-performance electrochemical materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Facile one-pot synthesis of NiCo2O4 hollow spheres with controllable number of shells for high-performance supercapacitors

Show Author's information Jing GuoZhihui YinXiaoxian ZangZiyang DaiYizhou ZhangWei Huang( )Xiaochen Dong( )
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China

Abstract

In this work, single- and double-shelled NiCo2O4 hollow spheres have been synthesized in situ by a one-pot solvothermal method assisted by xylose, followed by heat treatment. Employed as supercapacitor electrode materials, the double-shelled NiCo2O4 hollow spheres exhibit a remarkable specific capacitance (1, 204.4 F·g-1 at a current density of 2.0 A·g-1) and excellent cycling stability (103.6% retention after 10, 000 cycles at a current density of 10 A·g-1). Such outstanding electrochemical performance can be attributed to their unique internal morphology, which provides a higher surface area with a larger number of active sites available to interact with the electrolyte. The versatility of this method was demonstrated by applying it to other binary metal oxide materials, such as ZnCo2O4, ZnMn2O4, and CoMn2O4. The present study thus illustrates a simple and general strategy for the preparation of binary transition metal oxide hollow spheres with a controllable number of shells. This approach shows great promise for the development of next-generation high-performance electrochemical materials.

Keywords: supercapacitor, hollow spheres, NiCo2O4, controlled number of shells

References(36)

1

Oh, M. H.; Yu, T.; Yu, S. -H.; Lim, B.; Ko, K. -T.; Willinger, M. -G.; Seo, D. -H.; Kim, B. H.; Cho, M. G.; Park, J. -H. et al. Galvanic replacement reactions in metal oxide nanocrystals. Science 2013, 340, 964–968.

2

Joo, J. B.; Zhang, Q.; Dahl, M.; Lee, I.; Goebl, J.; Zaera, F.; Yin, Y. D. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energy Environ. Sci. 2012, 5, 6321–6327.

3

Lai, X. Y.; Halpert, J. E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ. Sci. 2012, 5, 5604–5618.

4

Hyuk Im, S.; Jeong, U.; Xia, Y. N. Polymer hollow particles with controllable holes in their surfaces. Nat. Mater. 2005, 4, 671–675.

5

Liu, J.; Qiao, S. Z.; Budi Hartono, S.; Lu, G. Q. Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem., Int. Ed. 2010, 49, 4981–4985.

6

An, K.; Hyeon, T. Synthesis and biomedical applications of hollow nanostructures. Nano Today 2009, 4, 359–373.

7

Cai, W. Q.; Yu, J. G.; Cheng, B.; Su, B. -L.; Jaroniec, M. Synthesis of boehmite hollow core/shell and hollow microspheres via sodium tartrate-mediated phase transformation and their enhanced adsorption performance in water treatment. J. Phys. Chem. C 2009, 113, 14739–14746.

8

Wang, Z. Y.; Luan, D. Y.; Boey, F. Y. C.; Lou, X. W. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. J. Am. Chem. Soc. 2011, 133, 4738–4741.

9

Hong, Y. J.; Son, M. Y.; Kang, Y. C. One-pot facile synthesis of double-shelled SnO2 yolk-shell-structured powders by continuous process as anode materials for Li-ion batteries. Adv. Mater. 2013, 25, 2279–2283.

10

Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/ nanostructures: Synthesis and applications. Adv Mater. 2008, 20, 3987–4019.

11

Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632–637.

12

Dong, Z. H.; Ren, H.; Hessel, C. M.; Wang, J. Y.; Yu, R. B.; Jin, Q.; Yang, M.; Hu, Z. D.; Chen, Y. F.; Tang, Z. Y. et al. Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells. Adv. Mater. 2014, 26, 905–909.

13

Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.

14

Li, J. F.; Xiong, S. L.; Li, X. W.; Qian, Y. T. A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 2013, 5, 2045–2054.

15

Qi, J.; Lai, X. Y.; Wang, J. Y.; Tang, H. J.; Ren, H.; Yu, Y.; Jin, Q.; Zhang, L. J.; Yu, R. B.; Ma, G. H. et al. Multi-shelled hollow micro-/nanostructures. Chem. Soc. Rev. 2015, 44, 6749–6773.

16

Lu, A. H.; Li, W. C.; Hao, G. P.; Spliethoff, B.; Bongard, H. J.; Schaack, B. B.; Schuth, F. Easy synthesis of hollow polymer, carbon, and graphitized microspheres. Angew. Chem., Int. Ed. 2010, 49, 1615–1618.

17

Xu, H. L.; Wang, W. Z. Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew. Chem., Int. Ed. 2007, 46, 1489–1492.

18

Zeng, Y.; Wang, X.; Wang, H.; Dong, Y.; Ma, Y.; Yao, J. N. Multi-shelled titania hollow spheres fabricated by a hard template strategy: Enhanced photocatalytic activity. Chem. Commun. 2010, 46, 4312–4314.

19

Chen, Y.; Chen, H. R.; Zeng, D. P.; Tian, Y. B.; Chen, F.; Feng, J. W.; Shi, J. L. Core/shell structured hollow mesoporous nanocapsules: A potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano 2010, 4, 6001–6013.

20

Dong, Z. H.; Lai, X. Y.; Halpert, J. E.; Yang, N. L.; Yi, L. X.; Zhai, J.; Wang, D.; Tang, Z. Y.; Jiang, L. Accurate control of multishelled ZnO hollow microspheres for dye- sensitized solar cells with high efficiency. Adv. Mater. 2012, 24, 1046–1049.

21

Lai, X. Y.; Li, J.; Korgel, B. A.; Dong, Z. H.; Li, Z. M.; Su, F. B.; Du, J.; Wang, D. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem., Int. Ed. 2011, 123, 2790–2793.

22

Wang, J. Y.; Yang, N. L.; Tang, H. J.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang, Z. Y.; Wang, D. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem., Int. Ed. 2013, 125, 6545–6548.

23

Qi, J.; Zhao, K.; Li, G. D.; Gao, Y.; Zhao, H. J.; Yu, R. B.; Tang, Z. Y. Multi-shelled CeO2 hollow microspheres as superior photocatalysts for water oxidation. Nanoscale 2014, 6, 4072–4077.

24

Xu, P. F.; Yu, R. B.; Ren, H.; Zong, L. B.; Chen, J.; Xing, X. R. Hierarchical nanoscale multi-shell Au/CeO2 hollow spheres. Chem. Sci. 2014, 5, 4221–4226.

25

Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. One- step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res. 2016, 9, 2026–2033.

26

Zhang, Y. F.; Li, L. G.; Su, H. Q.; Huang, W.; Dong, X. C. Binary metal oxide: Advanced energy storage materials in supercapacitors. J. Mater. Chem. A 2015, 3, 43–59.

27

Dong, X. C.; Xu, H.; Wang, X. W.; Huang, Y. -X.; Chan- Park, M. B.; Zhang, H.; Wang, L. -H.; Huang, W.; Chen, P. 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 2012, 6, 3206–3213.

28

Sun, H. M.; Wang, L. M.; Chu, D. Q.; Ma, Z. C.; Wang, A. X. Facile fabrication of multishelled Cr2O3 hollow microspheres with enhanced gas sensitivity. Mater. Lett. 2015, 140, 158–161.

29

Bai, F. H.; Xia, Y. D.; Chen, B. L.; Su, H. Q.; Zhu, Y. Q. Preparation and carbon dioxide uptake capacity of N-doped porous carbon materials derived from direct carbonization of zeolitic imidazolate framework. Carbon 2014, 79, 213–226.

30

Qian, L.; Gu, L.; Yang, L.; Yuan, H. Y.; Xiao, D. Direct growth of NiCo2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation. Nanoscale 2013, 5, 7388–7396.

31

Marco, J. F.; Gancedo, J. R.; Gracia, M.; Gautier, J. L.; Ríos, E. I.; Palmer, H. M.; Greaves, C.; Berry, F. J. Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4. J. Mater. Chem. 2001, 11, 3087–3093.

32

Marco, J. F.; Gancedo, J. R.; Gracia, M.; Gautier, J. L.; Ríos, E.; Berry, F. J. Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: An XRD, XANES, EXAFS, and XPS study. J. Solid State Chem. 2000, 153, 74–81.

33

Jiménez, V. M.; Fernández, A.; Espinós, J. P.; González- Elipe, A. R. The state of the oxygen at the surface of polycrystalline cobalt oxide. J. Electron Spectrosc. Relat. Phenom. 1995, 71, 61–71.

34

Choudhury, T.; Saied, S. O.; Sullivan, J. L.; Abbot, A. M. Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment. J. Phys. D: Appl. Phys. 1989, 22, 1185–1195.

35

Liu, X. Y.; Shi, S. J.; Xiong, Q. Q.; Li, L.; Zhang, Y. J.; Tang, H.; Gu, C. D.; Wang, X. L.; Tu, J. P. Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high- performance supercapacitor materials. ACS Appl. Mater. Interfaces 2013, 5, 8790–8795.

36

Guo, D.; Zhang, H. M.; Yu, X. Z.; Zhang, M.; Zhang, P.; Li, Q. H.; Wang, T. H. Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors. J. Mater. Chem. A 2013, 1, 7247–7254.

File
nr-10-2-405_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 August 2016
Revised: 26 September 2016
Accepted: 14 October 2016
Published: 04 January 2017
Issue date: February 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 61525402 and 21275076), Key University Science Research Project of Jiangsu Province (No. 15KJA430006), Jiangsu Provincial Founds for Distinguished Young Scholars (No. BK20130046), Program for New Century Excellent Talents in University (No. NCET-13-0853), QingLan Project.

Return