Journal Home > Volume 10 , Issue 3

Recently, graphene foam (GF) with a three-dimensional (3D) interconnected network produced by template-directed chemical vapor deposition (CVD) has been used to prepare composite phase-change materials (PCMs) with enhanced thermal conductivity. However, the pore size of GF is as large as hundreds of micrometers, resulting in a remarkable thermal resistance for heat transfer from the PCM inside the large pores to the GF strut walls. In this study, a novel 3D hierarchical GF (HGF) is obtained by filling the pores of GF with hollow graphene networks. The HGF is then used to prepare a paraffin wax (PW)-based composite PCM. The thermal conductivity of the PW/HGF composite PCM is 87% and 744% higher than that of the PW/GF composite PCM and pure PW, respectively. The PW/HGF composite PCM also exhibits better shape stability than the PW/GF composite PCM, negligible change in the phase-change temperature, a high thermal energy storage density that is 95% of pure PW, good thermal reliability, and chemical stability with cycling for 100 times. More importantly, PW/HGF composite PCM allows light-driven thermal energy storage with a high light-to-thermal energy conversion and storage efficiency, indicating its great potential for applications in solar-energy utilization and storage.


menu
Abstract
Full text
Outline
About this article

Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage

Show Author's information Guoqiang Qi1,2Jie Yang2Ruiying Bao2Dongyun Xia1Min Cao1Wei Yang2( )Mingbo Yang2Dacheng Wei1( )
State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China

Abstract

Recently, graphene foam (GF) with a three-dimensional (3D) interconnected network produced by template-directed chemical vapor deposition (CVD) has been used to prepare composite phase-change materials (PCMs) with enhanced thermal conductivity. However, the pore size of GF is as large as hundreds of micrometers, resulting in a remarkable thermal resistance for heat transfer from the PCM inside the large pores to the GF strut walls. In this study, a novel 3D hierarchical GF (HGF) is obtained by filling the pores of GF with hollow graphene networks. The HGF is then used to prepare a paraffin wax (PW)-based composite PCM. The thermal conductivity of the PW/HGF composite PCM is 87% and 744% higher than that of the PW/GF composite PCM and pure PW, respectively. The PW/HGF composite PCM also exhibits better shape stability than the PW/GF composite PCM, negligible change in the phase-change temperature, a high thermal energy storage density that is 95% of pure PW, good thermal reliability, and chemical stability with cycling for 100 times. More importantly, PW/HGF composite PCM allows light-driven thermal energy storage with a high light-to-thermal energy conversion and storage efficiency, indicating its great potential for applications in solar-energy utilization and storage.

Keywords: thermal conductivity, solar energy, phase-change materials, hierarchical graphene foam, light-to-thermal energy conversion

References(28)

1

Kholmanov, I.; Kim, J.; Ou, E.; Ruoff, R. S.; Shi, L. Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano 2015, 9, 11699-11707.

2

Zhang, Z. Y.; Dong, Y.; Wang, L.; Wang, S. Scalable synthesis of a Pd nanoparticle loaded hierarchically porous graphene network through multiple synergistic interactions. Chem. Commun. 2015, 51, 8357-8360.

3

Chen, L.; Zou, R.; Xia, W.; Liu, Z.; Shang, Y.; Zhu, J.; Wang, Y.; Lin, J.; Xia, D.; Cao, A. Electro- and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges. ACS Nano 2012, 6, 10884-10892.

4

Liu, Z. P.; Zou, R. Q.; Lin, Z. Q.; Gui, X. C.; Chen, R. J.; Lin, J. H.; Shang, Y. Y.; Cao, A. Y. Tailoring carbon nanotube density for modulating electro-to-heat conversion in phase change composites. Nano Lett. 2013, 13, 4028-4035.

5

Ji, H. X.; Sellan, D. P.; Pettes, M. T.; Kong, X. H.; Ji, J. Y.; Shi, L.; Ruoff, R. S. Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 2014, 7, 1185-1192.

6

Ye, S. B.; Zhang, Q. L.; Hu, D. D.; Feng, J. C. Core-shell-like structured graphene aerogel encapsulating paraffin: Shape-stable phase change material for thermal energy storage. J. Mater. Chem. A 2015, 3, 4018-4025.

7

Zhang, Q. L.; Cui, K. P.; Feng, J. C.; Fan, J. S.; Li, L. B.; Wu, L. M.; Huang, Q. Investigation on the recovery performance of olefin block copolymer/hexadecane form stable phase change materials with shape memory properties. Sol. Energy Mater. Sol. Cells 2015, 132, 632-639.

8

Xin, G.; Sun, H.; Scott, S. M.; Yao, T.; Lu, F.; Shao, D.; Hu, T.; Wang, G.; Ran, G.; Lian, J. Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage. ACS Appl. Mater. Interfaces 2014, 6, 15262-15271.

9

Goli, P.; Legedza, S.; Dhar, A.; Salgado, R.; Renteria, J.; Balandin, A. A. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J. Power Sources 2014, 248, 37-43.

10

Wang, Y. M.; Tang, B. T.; Zhang, S. F. Single-walled carbon nanotube/phase change material composites: Sunlight-driven, reversible, form-stable phase transitions for solar thermal energy storage. Adv. Funct. Mater. 2013, 23, 4354-4360.

11

Yu,Z.-T.; Fang, X.; Fan,L.-W.; Wang, X.; Xiao,Y.-Q.; Zeng, Y.; Xu, X.; Hu,Y.-C.; Cen,K.-F. Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes. Carbon 2013, 53, 277-285.

12

Qi,G.-Q.; Yang, J.; Bao,R.-Y.; Liu,Z.-Y.; Yang, W.; Xie,B.-H.; Yang,M.-B. Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage. Carbon 2015, 88, 196-205.

13

Zhou, M.; Lin, T. Q.; Huang, F. Q.; Zhong, Y. J.; Wang, Z.; Tang, Y. F.; Bi, H.; Wan, D. Y.; Lin, J. H. Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Adv. Funct. Mater. 2013, 23, 2263-2269.

14

Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424-428.

15

Worsley, M. A.; Pauzauskie, P. J.; Olson, T. Y.; Biener, J.; Satcher, J. H., Jr.; Baumann, T. F. Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 2010, 132, 14067-14069.

16

Li, Y. R.; Chen, J.; Huang, L.; Li, C.; Hong,J.-D.; Shi, G. Q. Highly compressible macroporous graphene monoliths via an improved hydrothermal process. Adv. Mater. 2014, 26, 4789-4793.

17

Pettes, M. T.; Ji, H. X.; Ruoff, R. S.; Shi, L. Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite. Nano Lett. 2012, 12, 2959-2964.

18

Sun, H.; Deng, J.; Qiu, L. B.; Fang, X.; Peng, H. S. Recent progress in solar cells based on one-dimensional nanomaterials. Energy Environ. Sci. 2015, 8, 1139-1159.

19

Bonaccorso, F.; Balis, N.; Stylianakis, M. M.; Savarese, M.; Adamo, C.; Gemmi, M.; Pellegrini, V.; Stratakis, E.; Kymakis, E. Functionalized graphene as an electron-cascade acceptor for air-processed organic ternary solar cells. Adv. Funct. Mater. 2015, 25, 3870-3880.

20

Li, Y. Q.; Samad, Y. A.; Polychronopoulou, K.; Alhassan, S. M.; Liao, K. From biomass to high performance solar-thermal and electric-thermal energy conversion and storage materials. J. Mater. Chem. A 2014, 2, 7759-7765.

21

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706-710.

22

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.

23

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30-35.

24

Mehrali, M.; Latibari, S. T.; Mehrali, M.; Metselaar, H. S. C.; Silakhori, M. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energy Convers. Manag. 2013, 67, 275-282.

25

Yavari, F.; Fard, H. R.; Pashayi, K.; Rafiee, M. A.; Zamiri, A.; Yu, Z. Z.; Ozisik, R.; Borca-Tasciuc, T.; Koratkar, N. Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives. J. Phys. Chem. C 2011, 115, 8753-8758.

26

Huang, X. Y.; Liu, Z. P.; Xia, W.; Zou, R. Q.; Han, R. P. S. Alkylated phase change composites for thermal energy storage based on surface-modified silica aerogels. J. Mater. Chem. A 2015, 3, 1935-1940.

27

Chen, R. J.; Yao, R. M.; Xia, W.; Zou, R. Q. Electro/photo to heat conversion system based on polyurethane embedded graphite foam. Appl. Energ. 2015, 152, 183-188.

28

Huang, X. Y.; Xia, W.; Zou, R. Q. Nanoconfinement of phase change materials within carbon aerogels: Phase transition behaviours and photo-to-thermal energy storage. J. Mater. Chem. A 2014, 2, 19963-19968.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 September 2016
Revised: 10 October 2016
Accepted: 12 October 2016
Published: 22 December 2016
Issue date: March 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was funded by the National Thousand Young Talents of China, the National Natural Science Foundation of China (Nos. 21544001, 21603038, 51422305, and 51421061), the Innovation Team Program of Science & Technology Department of Sichuan Province (No. 2014TD0002) and State Key Laboratory of Polymer Materials Engineering (No. sklpme2014-2-02).

Return