Journal Home > Volume 10 , Issue 3

Therapeutic nanoparticles (NPs) based on the donor-acceptor-donor structured small organic molecule diketopyrrolopyrrole (SDPP) were prepared using a simple reprecipitation approach. These near-infrared radiation-absorbing NPs have high photothermal conversion efficiency and are able to selectively target cancer tissues through the enhanced permeability and retention effect. Benefiting from these advantages, SDPP NPs can serve as an excellent therapeutic agent for highly efficient and noninvasive photoacoustic imaging-guided photothermal therapy. Experiments using mouse tumor models showed that the SDPP NPs exhibited exceptional tumor ablation ability under laser irradiation (660 nm, 1.0 W·cm-2), even at a low dose (0.16 mg·kg-1).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Small-molecule diketopyrrolopyrrole-based therapeutic nanoparticles for photoacoustic imaging-guided photothermal therapy

Show Author's information Yu Cai1,§Weili Si1,§Qianyun Tang1Pingping Liang1Chengwu Zhang1Peng Chen2Qi Zhang3( )Wei Huang1( )Xiaochen Dong1( )
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road Nanjing 211816 China
School of Chemical and Biomedical Engineering Nanyang Technological University, 70 Nanyang Drive, N1.3-B3-08 Singapore
School of Pharmaceutical Sciences Nanjing Tech University (NanjingTech), 30 South Puzhu Road Nanjing 211816 China

§ These authors contributed equally to this work.

Abstract

Therapeutic nanoparticles (NPs) based on the donor-acceptor-donor structured small organic molecule diketopyrrolopyrrole (SDPP) were prepared using a simple reprecipitation approach. These near-infrared radiation-absorbing NPs have high photothermal conversion efficiency and are able to selectively target cancer tissues through the enhanced permeability and retention effect. Benefiting from these advantages, SDPP NPs can serve as an excellent therapeutic agent for highly efficient and noninvasive photoacoustic imaging-guided photothermal therapy. Experiments using mouse tumor models showed that the SDPP NPs exhibited exceptional tumor ablation ability under laser irradiation (660 nm, 1.0 W·cm-2), even at a low dose (0.16 mg·kg-1).

Keywords: photoacoustic imaging, photothermal therapy, diketopyrrolopyrrole, donor-acceptor-donor

References(43)

1

Zhu, C. L.; Liu, L. B.; Yang, Q.; Lv, F. T.; Wang, S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev. 2012, 112, 4687-4735.

2

Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433-3440.

3

Shi, S. X.; Chen, F.; Ehlerding, E. B.; Cai, W. B. Surface engineering of graphene-based nanomaterials for biomedical applications. Bioconjugate Chem. 2014, 25, 1609-1619.

4

Cai, Y.; Tang, Q. Y.; Wu, X. J.; Si, W. L.; Zhang, Q.; Huang, W.; Dong, X. C. Bromo-substituted diketopyrrolopyrrole derivative with specific targeting and high efficiency for photodynamic therapy. ACS Appl. Mater. Interfaces 2016, 8, 10737-10742.

5

Shi, H. X.; Sun, W. C.; Liu, C. B.; Gu, G. Y.; Ma, B.; Si, W. L.; Fu, N.; Zhang, Q.; Huang, W.; Dong, X. C. Tumor-targeting, enzyme-activated nanoparticles for simultaneous cancer diagnosis and photodynamic therapy. J. Mater. Chem. B 2016, 4, 113-120.

6

Huang, Y. J.; Hu, H.; Li, R. Q.; Yu, B. R.; Xu, F. J. Versatile types of MRI-visible cationic nanoparticles involving pullulan polysaccharides for multifunctional gene carriers. ACS Appl. Mater. Interfaces 2016, 8, 3919-3927.

7

Zhu, X. J.; Feng, W.; Chang, J.; Tan, Y. W.; Li, J. C.; Chen, M.; Sun, Y.; Li, F. Y. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 2016, 7, 10437.

8

Huang, P.; Rong, P. F.; Lin, J.; Li, W. W.; Yan, X. F.; Zhang, M. G.; Nie, L. M.; Niu, G.; Lu, J.; Wang, W. et al. Triphase interface synthesis of plasmonic gold bellflowers as near-infrared light mediated acoustic and thermal theranostics. J. Am. Chem. Soc. 2014, 136, 8307-8313.

9

Song, G. S.; Hao, J. L.; Liang, C.; Liu, T.; Gao, M.; Cheng, L.; Hu, J. Q.; Liu, Z. Degradable molybdenum oxide nanosheets with rapid clearance and efficient tumor homing capabilities as a therapeutic nanoplatform. Angew. Chem., Int. Ed. 2016, 55, 2122-2126.

10

Song, X. J.; Chen, Q.; Liu, Z. Recent advances in the development of organic photothermal nano-agents. Nano Res. 2015, 8, 340-354.

11

Lokerse, W. J. M.; Kneepkens, E. C. M.; ten Hagen, T. L. M.; Eggermont, A. M. M.; Grüll, H.; Koning, G. A. In depth study on thermosensitive liposomes: Optimizing formulations for tumor specific therapy and in vitro to in vivo relations. Biomaterials 2016, 82, 138-150.

12

Zhou, Z. G.; Sun, Y.; Shen, J. C.; Wei, J.; Yu, C.; Kong, B.; Liu, W.; Yang, H.; Yang, S. P.; Wang, W. Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 2014, 35, 7470-7478.

13

Yang, K.; Xu, H.; Cheng, L.; Sun, C. Y.; Wang, J.; Liu, Z. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv. Mater. 2012, 24, 5586-5592.

14

Liu, Y. L.; Yang, M.; Zhang, J. P.; Zhi, X.; Li, C.; Zhang, C. L.; Pan, F.; Wang, K.; Yang, Y. M.; Martinez de la Fuentea, J. et al. Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy. ACS Nano 2016, 10, 2375-2385.

15

Huang, P.; Lin, J.; Wang, S. J.; Zhou, Z. J.; Li, Z. M.; Wang, Z.; Zhang, C. L.; Yue, X. Y.; Niu, G.; Yang, M. et al. Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy. Biomaterials 2013, 34, 4643-4654.

16

Li, W. W.; Rong, P. F.; Yang, K.; Huang, P.; Sun, K.; Chen, X. Y. Semimetal nanomaterials of antimony as highly efficient agent for photoacoustic imaging and photothermal therapy. Biomaterials 2015, 45, 18-26.

17

Piao, J. G.; Liu, D.; Hu, K.; Wang, L. M.; Gao, F.; Xiong, Y. J.; Yang, L. H. Cooperative nanoparticle system for photothermal tumor treatment without skin damage. ACS Appl. Mater. Interfaces 2016, 8, 2847-2856.

18

Gao, S.; Zhang, L. W.; Wang, G. H.; Yang, K.; Chen, M. L.; Tian, R.; Ma, Q. J.; Zhu, L. Hybrid graphene/Au activatable theranostic agent for multimodalities imaging guided enhanced photothermal therapy. Biomaterials 2016, 79, 36-45.

19

Chen, D. Q.; Wang, C.; Nie, X.; Li, S. M.; Li, R. M.; Guan, M. R.; Liu, Z.; Chen, C. Y.; Wang, C. R.; Shu, C. Y. et al. Photoacoustic imaging guided near-infrared photothermal therapy using highly water-dispersible single-walled carbon nanohorns as theranostic agents. Adv. Funct. Mater. 2014, 24, 6621-6628.

20

Chen, L.; Zhong, X. Y.; Yi, X.; Huang, M.; Ning, P.; Liu, T.; Ge, C. C.; Chai, Z. F.; Liu, Z.; Yang, K. Radionuclide (131)I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials 2015, 66, 21-28.

21

Wang, L.; Yang, P. P.; Zhao, X. X.; Wang, H. Self-assembled nanomaterials for photoacoustic imaging. Nanoscale 2016, 8, 2488-2509.

22

Muhanna, N.; Jin, C. S.; Huynh, E.; Chan, H.; Qiu, Y.; Jiang, W. L.; Cui, L. Y.; Burgess, L.; Akens, M. K.; Chen, J. et al. Phototheranostic porphyrin nanoparticles enable visualization and targeted treatment of head and neck cancer in clinically relevant models. Theranostics 2015, 5, 1428-1443.

23

Hu, Y.; Zhou, Y. Q.; Zhao, N. N.; Liu, F. S.; Xu, F. J. Multifunctional pDNA-conjugated polycationic Au nanorod-coated Fe3O4 hierarchical nanocomposites for trimodal imaging and combined photothermal/gene therapy. Small 2016, 12, 2459-2468.

24

Zhao, N.; Li, J.; Zhou, Y. Q.; Hu, Y.; Wang, R. R.; Ji, Z. X.; Liu, F. S.; Xu,F.-J. Hierarchical nanohybrids of gold nanorods and PGMA-based polycations for multifunctional theranostics. Adv. Funct. Mater. 2016, 26, 5848-5861.

25

Kaur, M.; Choi, D. H. Diketopyrrolopyrrole: Brilliant red pigment dye-based fluorescent probes and their applications. Chem. Soc. Rev. 2015, 44, 58-77.

26

Bürckstummer, H.; Weissenstein, A.; Bialas, D.; Würthner, F. Synthesis and characterization of optical and redox properties of bithiophene-functionalized diketopyrrolopyrrole chromophores. J. Org. Chem. 2011, 76, 2426-2432.

27

Yi, Z. R.; Wang, S.; Liu, Y. Q. Design of high-mobility diketopyrrolopyrrole-based π-conjugated copolymers for organic thin-film transistors. Adv. Mater. 2015, 27, 3589-3606.

28

Shen, X. Y.; Wang, Y. J.; Zhang, H. K.; Qin, A. J.; Sun, J. Z.; Tang, B. Z. Conjugates of tetraphenylethene and diketopyrrolopyrrole: Tuning the emission properties with phenyl bridges. Chem. Commun. 2014, 50, 8747-8750.

29

Zhang, Y.; Kim, C.; Lin, J.; Nguyen,T.-Q. Solution-processed ambipolar field-effect transistor based on diketopyrrolopyrrole functionalized with benzothiadiazole. Adv. Funct. Mater. 2012, 22, 97-105.

30

Zou, Y. P.; Gendron, D.; Neagu-Plesu, R.; Leclerc, M. Synthesis and characterization of new low-bandgap diketopyrrolopyrrole-based copolymers. Macromolecules 2009, 42, 6361-6365.

31

Lan, M. H.; Zhang, J. F.; Zhu, X. Y.; Wang, P. F.; Chen, X. F.; Lee,C.-S.; Zhang, W. J. Highly stable organic fluorescent nanorods for living-cell imaging. Nano Res. 2015, 8, 2380-2389.

32

Schmitt, J.; Heitz, V.; Sour, A.; Bolze, F.; Ftouni, H.; Nicoud, J. F.; Flamigni, L.; Ventura, B. Diketopyrrolopyrrole-porphyrin conjugates with high two-photon absorption and singlet oxygen generation for two-photon photodynamic therapy. Angew. Chem., Int. Ed. 2015, 54, 169-173.

33

Kanimozhi, C.; Yaacobi-Gross, N.; Chou, K. W.; Amassian, A.; Anthopoulos, T. D.; Patil, S. Diketopyrrolopyrrole-diketopyrrolopyrrole-based conjugated copolymer for high-mobility organic field-effect transistors. J. Am. Chem. Soc. 2012, 134, 16532-16535.

34

Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Liu, J. S.; Fréchet, J. M. J.; Toney, M. F. Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules 2005, 38, 3312-3319.

35

Lee, O. P.; Yiu, A. T.; Beaujuge, P. M.; Woo, C. H.; Holcombe, T. W.; Millstone, J. E.; Douglas, J. D.; Chen, M. S.; Fréchet, J. M. J. Efficient small molecule bulk heterojunction solar cells with high fill factors via pyrene-directed molecular self-assembly. Adv. Mater. 2011, 23, 5359-5363.

36

Jana, A.; Devi, K. S. P.; Maiti, T. K.; Singh, N. D. P. Perylene-3-ylmethanol: Fluorescent organic nanoparticles as a single-component photoresponsive nanocarrier with real-time monitoring of anticancer drug release. J. Am. Chem. Soc. 2012, 134, 7656-7659.

37

Peng, H. S.; Chiu, D. T. Soft fluorescent nanomaterials for biological and biomedical imaging. Chem. Soc. Rev. 2015, 44, 4699-4722.

38

Hauert, S.; Bhatia, S. N. Mechanisms of cooperation in cancer nanomedicine: Towards systems nanotechnology. Trends Biotechnol. 2014, 32, 448-455.

39

Fan, Q. L.; Cheng, K.; Yang, Z.; Zhang, R. P.; Yang, M.; Hu, X.; Ma, X. W.; Bu, L. H.; Lu, X. M.; Xiong, X. X. et al. Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice. Adv. Mater. 2015, 27, 843-847.

40

Grzybowski, M.; Hugues, V.; Blanchard-Desce, M.; Gryko, D. T. Two-photon-induced fluorescence in new π-expanded diketopyrrolopyrroles. Chem. -Eur. J. 2014, 20, 12493-12501.

41

Aioub, M.; El-Sayed, M. A. A real-time surface enhanced raman spectroscopy study of plasmonic photothermal cell death using targeted gold nanoparticles. J. Am. Chem. Soc. 2016, 138, 1258-1264.

42

Wang, Z. H.; Sun, J. H.; Qiu, Y. Q.; Li, W.; Guo, X. M.; Li, Q. P.; Zhang, H. B.; Zhou, J. L.; Du, Y. Z.; Yuan, H. et al. Specific photothermal therapy to the tumors with high EphB4 receptor expression. Biomaterials 2015, 68, 32-41.

43

Saravanakumar, G.; Lee, J.; Kim, J.; Kim, W. J. Visible light-induced singlet oxygen-mediated intracellular disassembly of polymeric micelles co-loaded with a photosensitizer and an anticancer drug for enhanced photodynamic therapy. Chem. Commun. 2015, 51, 9995-9998.

File
nr-10-3-794_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 August 2016
Revised: 08 October 2016
Accepted: 12 October 2016
Published: 23 December 2016
Issue date: March 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The work was supported by the National Basic Research Program of China (No. 2014CB660808), the National Natural Science Foundation of China (Nos. 61525402 and 21275076), Key University Science Research Project of Jiangsu Province (No. 15KJA430006), Program for New Century Excellent Talents in University (No. NCET-13-0853), QingLan Project, Jiangsu Province Science Foundation for Six Great Talent Peak (No. XCL-018).

Return