Journal Home > Volume 10 , Issue 5

Manipulation of valley pseudospins is crucial for future valleytronics. The emerging transition metal dichalcogenides (TMDs) provide new possibilities for exploring the interplay among the quantum degrees of freedom, including real spin, valley pseudospin, and layer pseudospin. For example, spin–valley coupling results in valley-dependent circular dichroism in which electrons with particular spin (up or down) can be selectively excited by chiral optical pumping in monolayer TMDs, whereas in few-layer TMDs, the interlayer hopping further affects the spin–valley coupling. In addition to valley and layer pseudospins, here we propose a new degree of freedom—stacking pseudospin—and demonstrate new phenomena correlated to this new stacking freedom that otherwise require the application of external electrical or magnetic field. We investigated all possible stacking configurations of chemical-vapor-deposition-grown trilayer MoS2 (AAA, ABB, AAB, ABA, and 3R). Although the AAA, ABA, 3R stackings possess a sole peak with lower degree of valley polarization than that in monolayer samples, the AAB (ABB) stackings exhibit two distinct peaks, one similar to that observed in monolayer MoS2 and an additional unpolarized peak at lower energy. Our findings provide a more complete understanding of valley quantum control for future valleytronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Valley polarization in stacked MoS2 induced by circularly polarized light

Show Author's information Juan Xia1Xingli Wang2Beng Kang Tay2,3Shoushun Chen4Zheng Liu2,3,5Jiaxu Yan1,6( )Zexiang Shen1,3,7( )
Division of Physics and Applied Physics School of Physical and Mathematical Sciences, Nanyang Technological UniversitySingapore 637371 Singapore
NOVITAS, Nanoelectronics Centre of Excellence School of Electrical and Electronic Engineering, Nanyang Technological UniversitySingapore 639798 Singapore
CINTRA CNRS/NTU/THALES, UMI 3288 Research Techno PlazaSingapore 637553 Singapore
School of Electrical and Electronic Engineering Nanyang Technological UniversitySingapore 639798 Singapore
Center for Programmable Materials School of Materials Science and Engineering, Nanyang Technological UniversitySingapore 639798 Singapore
Institute of Advanced Materials (IAM) Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing 211816 China
Centre for Disruptive Photonic Technologies Nanyang Technological UniversitySingapore 637371 Singapore

Abstract

Manipulation of valley pseudospins is crucial for future valleytronics. The emerging transition metal dichalcogenides (TMDs) provide new possibilities for exploring the interplay among the quantum degrees of freedom, including real spin, valley pseudospin, and layer pseudospin. For example, spin–valley coupling results in valley-dependent circular dichroism in which electrons with particular spin (up or down) can be selectively excited by chiral optical pumping in monolayer TMDs, whereas in few-layer TMDs, the interlayer hopping further affects the spin–valley coupling. In addition to valley and layer pseudospins, here we propose a new degree of freedom—stacking pseudospin—and demonstrate new phenomena correlated to this new stacking freedom that otherwise require the application of external electrical or magnetic field. We investigated all possible stacking configurations of chemical-vapor-deposition-grown trilayer MoS2 (AAA, ABB, AAB, ABA, and 3R). Although the AAA, ABA, 3R stackings possess a sole peak with lower degree of valley polarization than that in monolayer samples, the AAB (ABB) stackings exhibit two distinct peaks, one similar to that observed in monolayer MoS2 and an additional unpolarized peak at lower energy. Our findings provide a more complete understanding of valley quantum control for future valleytronics.

Keywords: molybdenum disulfide, first-principles calculations, valley polarization, circularly polarized photoluminescence, ultra-low-frequency Raman spectroscopy

References(41)

1

Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.

2

Pesin, D.; MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 2012, 11, 409–416.

3

Xiao, J.; Ye, Z. L.; Wang, Y.; Zhu, H. Y.; Wang, Y.; Zhang, X. Nonlinear optical selection rule based on valley-exciton locking in monolayer WS2. Light: Sci. Appl. 2015, 4, e366.

4

Rycerz, A.; Tworzydlo, J.; Beenakker, C. W. J. Valley filter and valley valve in graphene. Nat. Phys. 2007, 3, 172–175.

5

Isberg, J.; Gabrysch, M.; Hammersberg, J.; Majdi, S.; Kovi, K. K.; Twitchen, D. J. Generation, transport and detection of valley-polarized electrons in diamond. Nat. Mater. 2013, 12, 760–764.

6

Takashina, K.; Ono, Y.; Fujiwara, A.; Takahashi, Y.; Hirayama, Y. Valley polarization in Si(100) at zero magnetic field. Phys. Rev. Lett. 2006, 96, 236801.

7

Shkolnikov, Y. P.; De Poortere, E. P.; Tutuc, E.; Shayegan, M. Valley splitting of AlAs two-dimensional electrons in a perpendicular magnetic field. Phys. Rev. Lett. 2002, 89, 226805.

8

Zhu, Z. W.; Collaudin, A.; Fauqué, B.; Kang, W.; Behnia, K. Field-induced polarization of Dirac valleys in bismuth. Nat. Phys. 2012, 8, 89–94.

9

Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638.

10

Cao, T.; Wang, G.; Han, W. P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E. G.; Liu, B. L. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.

11

Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498.

12

Sie, E. J.; McIver, J. W.; Lee, Y.-H.; Fu, L.; Kong, J.; Gedik, N. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 2015, 14, 290–294.

13

Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.

14

Xiao, D.; Liu, G.-B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-Ⅵ dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

15

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

16

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

17

Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.

18

Gong, Z. R.; Liu, G.-B.; Yu, H. Y.; Xiao, D.; Cui, X. D.; Xu, X. D.; Yao, W. Magnetoelectric effects and valley- controlled spin quantum gates in transition metal dichalcogenide bilayers. Nat. Commun. 2013, 4, 2053.

19

Jones, A. M.; Yu, H. Y.; Ross, J. S.; Klement, P.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Spin- layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. 2014, 10, 130–134.

20

Zhu, B. R.; Zeng, H. L.; Dai, J. F.; Gong, Z. R.; Cui, X. D. Anomalously robust valley polarization and valley coherence in bilayer WS2. Proc. Natl. Acad. Sci. USA 2014, 111, 11606–11611.

21

Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.

22

Wu, S. F.; Ross, J. S.; Liu, G.-B.; Aivazian, G.; Jones, A.; Fei, Z. Y.; Zhu, W. G.; Xiao, D.; Yao, W.; Cobden, D. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 2013, 9, 149–153.

23

Yao, W.; Xiao, D.; Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 2008, 77, 235406.

24

Liu, Q. H.; Zhang, X. W.; Zunger, A. Intrinsic circular polarization in centrosymmetric stacks of transition-metal dichalcogenide compounds. Phys. Rev. Lett. 2015, 114, 087402.

25

Zhang, X. W.; Liu, Q. H.; Luo, J.-W.; Freeman, A. J.; Zunger, A. Hidden spin polarization in inversion-symmetric bulk crystals. Nat. Phys. 2014, 10, 387–393.

26

Aivazian, G.; Gong, Z. R.; Jones, A. M.; Chu, R.-L.; Yan, J.; Mandrus, D. G.; Zhang, C. W.; Cobden, D.; Yao, W.; Xu, X. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 2015, 11, 148–152.

27

Li, X.; Zhang, F.; Niu, Q. Unconventional quantum hall effect and tunable spin hall effect in dirac materials: Application to an isolated MoS2 trilayer. Phys. Rev. Lett. 2013, 110, 066803.

28

MacNeill, D.; Heikes, C.; Mak, K. F.; Anderson, Z.; Kormányos, A.; Zólyomi, V.; Park, J.; Ralph, D. C. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 2015, 114, 037401.

29

Scrace, T.; Tsai, Y.; Barman, B.; Schweidenback, L.; Petrou, A.; Kioseoglou, G.; Ozfidan, I.; Korkusinski, M.; Hawrylak, P. Magnetoluminescence and valley polarized state of a two-dimensional electron gas in WS2 monolayers. Nat. Nanotechnol. 2015, 10, 603–607.

30

Suzuki, R.; Sakano, M.; Zhang, Y. J.; Akashi, R.; Morikawa, D.; Harasawa, A.; Yaji, K.; Kuroda, K.; Miyamoto, K.; Okuda, T. et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 2014, 9, 611–617.

31

Jiang, T.; Liu, H. R.; Huang, D.; Zhang, S.; Li, Y. G.; Gong, X. G.; Shen, Y.-R.; Liu, W.-T.; Wu, S. W. Valley and band structure engineering of folded MoS2 bilayers. Nat. Nanotechnol. 2014, 9, 825–829.

32

Akashi, R.; Ochi, M.; Bordács, S.; Suzuki, R.; Tokura, Y.; Iwasa, Y.; Arita, R. Two-dimensional valley electrons and excitons in noncentrosymmetric 3R-MoS2. Phys. Rev. Appl. 2015, 4, 014002.

33

Lui, C. H.; Ye, Z. P.; Keiser, C.; Barros, E. B.; He, R. Stacking-dependent shear modes in trilayer graphene. Appl. Phys. Lett. 2015, 106, 041904.

34

Tan, P. H.; Han, W. P.; Zhao, W. J.; Wu, Z. H.; Chang, K.; Wang, H.; Wang, Y. F.; Bonini, N.; Marzari, N.; Pugno, N. et al. The shear mode of multilayer graphene. Nat. Mater. 2012, 11, 294–300.

35

Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J. et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged, and free excitons. Sci. Rep. 2013, 3, 2657.

36

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. : Condens. Matter 2009, 21, 395502.

37

Hamann, D. R. Generalized norm-conserving pseudopotentials. Phys. Rev. B 1989, 40, 2980–2987.

38

Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079.

39

Lazzeri, M.; Mauri, F. First-principles calculation of vibrational Raman spectra in large systems: Signature of small rings in crystalline SiO2. Phys. Rev. Lett. 2003, 90, 036401.

40

Marzari, N.; Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 1997, 56, 12847–12865.

41

Mostofi, A. A.; Yates, J. R.; Lee, Y.-S.; Souza, I.; Vanderbilt, D.; Marzari, N. Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2008, 178, 685–699.

File
nr-10-5-1618_ESM.pdf (3.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 August 2016
Revised: 10 October 2016
Accepted: 12 October 2016
Published: 12 November 2016
Issue date: May 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This research was supported by MOE under AcRF Tier 2 (No. MOE2012-T2-2-124) and AcRF Tier 3 (No. MOE2011-T3-1-005) in Singapore. X. L. W. and B. K. T. would like to acknowledge the funding support from NTU-A*STAR Silicon Technologies Centre of Excellence under the program grant No. 112 3510 0003. L. Z. would like to acknowledge the funding support from the Singapore National Research Foundation under NRF RF Award No. NRF-RF2013-08. J. X. Y. and J. X. acknowledge the technical support from H. L. H. at WITec. We thank Dr. Jer-Lai Kuo for helpful discussions.

Return