Journal Home > Volume 10 , Issue 2

Drug resistance renders standard chemotherapy ineffective in the treatment of connective tissue growth factor (CTGF)-overexpressing breast cancer. By co-embedding the breast tumor cell-penetrating peptide (PEGA-pVEC) and hyaluronic acid (HA) as a targeting media, novel cascaded targeting nanoparticles (HACT NPs) were created on a rattle mesoporous silica (rmSiO2) scaffold for the pinpoint delivery of siRNAs along with an anticancer drug, aiming at overcoming the drug resistance of CTGF-overexpressing breast cancer in vivo. The targeting nanoparticles selectively accumulated in the vasculature under the guidance of the PEGA-pVEC peptide, cascaded by receptor-mediated endocytosis with the aid of another targeting agent, HA, presenting a greater in vivo tumor targeting ability than single targeting ligand vectors. In addition, an HA shell prevented the leakage of therapeutic drugs during the cargo transport process, until the hyaluronidase (HAase)-triggered degradation upon lysosomes entering, guaranteeing a controllable drug release inside the target cells. When the protective shell disintegrates, the released siRNA took charge to silence the gene associated with drug resistance, CTGF, thus facilitating doxorubicin-induced apoptosis. The cascaded targeting media (PEGA-pVEC and HA) advances precision-guided therapy in vivo, while the encapsulation of siRNAs into a chemotherapy drug delivery system provides an efficient strategy for the treatment of drug resistance cancers.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hyaluronidase-triggered anticancer drug and siRNA delivery from cascaded targeting nanoparticles for drug- resistant breast cancer therapy

Show Author's information Jie Ding1,2Tingxizi Liang1Ying Zhou1Zhiwei He2Qianhao Min1( )Liping Jiang1( )Junjie Zhu1
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, China-America Cancer Research Institute, Guangdong Medical University, Dongguan 523808, China

Abstract

Drug resistance renders standard chemotherapy ineffective in the treatment of connective tissue growth factor (CTGF)-overexpressing breast cancer. By co-embedding the breast tumor cell-penetrating peptide (PEGA-pVEC) and hyaluronic acid (HA) as a targeting media, novel cascaded targeting nanoparticles (HACT NPs) were created on a rattle mesoporous silica (rmSiO2) scaffold for the pinpoint delivery of siRNAs along with an anticancer drug, aiming at overcoming the drug resistance of CTGF-overexpressing breast cancer in vivo. The targeting nanoparticles selectively accumulated in the vasculature under the guidance of the PEGA-pVEC peptide, cascaded by receptor-mediated endocytosis with the aid of another targeting agent, HA, presenting a greater in vivo tumor targeting ability than single targeting ligand vectors. In addition, an HA shell prevented the leakage of therapeutic drugs during the cargo transport process, until the hyaluronidase (HAase)-triggered degradation upon lysosomes entering, guaranteeing a controllable drug release inside the target cells. When the protective shell disintegrates, the released siRNA took charge to silence the gene associated with drug resistance, CTGF, thus facilitating doxorubicin-induced apoptosis. The cascaded targeting media (PEGA-pVEC and HA) advances precision-guided therapy in vivo, while the encapsulation of siRNAs into a chemotherapy drug delivery system provides an efficient strategy for the treatment of drug resistance cancers.

Keywords: hyaluronic acid, siRNA, drug-resistant breast cancer, breast tumor cell-penetrating peptide, rattle mesoporous silica

References(36)

1

Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 2012, 62, 10–29.

2

Siegel, R.; DeSantis, C.; Virgo, K.; Stein, K.; Mariotto, A.; Smith, T.; Cooper, D.; Gansler, T.; Lerro, C.; Fedewa, S. et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin. 2012, 62, 220–241.

3

Bork, P. The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett. 1993, 327, 125–130.

4

Lau, L. F.; Lam, S. C. T. The CCN family of angiogenic regulators: The integrin connection. Exp. Cell Res. 1999, 248, 44–57.

5

Kondo, S.; Kubota, S.; Shimo, T.; Nishida, T.; Yosimichi, G.; Eguchi, T.; Sugahara, T.; Takigawa, M. Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases. Carcinogenesis 2002, 23, 769–776.

6

Xie, D.; Nakachi, K.; Wang, H.; Elashoff, R.; Koeffler, H. P. Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res. 2001, 61, 8917–8923.

7

Chen, P. S.; Wang, M. Y.; Wu, S. N.; Su, J. L.; Hong, C. C.; Chuang, S. E.; Chen, M. W.; Hua, K. T.; Wu, Y. L.; Cha, S. T. et al. CTGF enhances the motility of breast cancer cells via an integrin-αvβ3-ERK1/2-dependent S100A4- upregulated pathway. J. Cell Sci. 2007, 120, 2053–2065.

8

Mehlen, P.; Puisieux, A. Metastasis: A question of life or death. Nat. Rev. Cancer 2006, 6, 449–458.

9

Wang, M. Y.; Chen, P. S.; Prakash, E.; Hsu, H. C.; Huang, H. Y.; Lin, M. T.; Chang, K. J.; Kuo, M. L. Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1. Cancer Res. 2009, 69, 3482–3491.

10
Salcher, E. E.; Wagner, E. Chemically programmed polymers for targeted DNA and siRNA transfection. In Nucleic Acid Transfection; Bielke, W.; Erbacher, C., Eds.; Springer: Berlin, Heidelberg, Germany, 2010; pp 227–249.https://doi.org/10.1007/128_2010_69
DOI
11

Pecot, C. V.; Calin, G. A.; Coleman, R. L.; Lopez-Berestein, G.; Sood, A. K. RNA interference in the clinic: Challenges and future directions. Nat. Rev. Cancer 2011, 11, 59–67.

12

Thompson, J. D. Clinical development of synthetic siRNA therapeutics. Drug Discov. Today Ther. Strateg. 2013, 10, e133–e138.

13

Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760.

14

Jain, R. K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664.

15

Cabral, H.; Nishiyama, N.; Kataoka, K. Supramolecular nanodevices: From design validation to theranostic nano­medicine. Acc. Chem. Res. 2011, 44, 999–1008.

16

Mo, R.; Jiang, T. Y.; DiSanto, R.; Tai, W. Y.; Gu, Z. ATP- triggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364.

17

Zhang, Q.; Ge, J. P.; Goebl, J.; Hu, Y. X.; Lu, Z. D.; Yin, Y. D. Rattle-type silica colloidal particles prepared by a surface-protected etching process. Nano Res. 2009, 2, 583–591.

18

Li, L. L.; Tang, F. Q.; Liu, H. Y.; Liu, T. L.; Hao, N. J.; Chen, D.; Teng, X.; He, J. Q. In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano 2010, 4, 6874–6882.

19

Yuan, F.; Leunig, M.; Huang, S. K.; Berk, D. A.; Papahadjopoulos, D.; Jain, R. K. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 1994, 54, 3352–3356.

20

Campbell, R. B.; Fukumura, D.; Brown, E. B.; Mazzola, L. M.; Izumi, Y.; Jain, R.; Torchilin, K. V. P.; Munn, L. L. Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res. 2002, 62, 6831–6836.

21

Heldin, C. H.; Rubin, K.; Pietras, K.; Östman, A. High interstitial fluid pressure-an obstacle in cancer therapy. Nat. Rev. Cancer 2004, 4, 806–813.

22

Burrows, F. J.; Thorpe, P. E. Vascular targeting—A new approach to the therapy of solid tumors. Pharmacol. Ther. 1994, 64, 155–174.

23

Hashizume, H.; Baluk, P.; Morikawa, S.; McLean, J. W.; Thurston, G.; Roberge, S.; Jain, R. K.; McDonald, D. M. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 2000, 156, 1363–1380.

24

Leu, A. J.; Berk, D. A.; Lymboussaki, A.; Alitalo, K.; Jain, R. K. Absence of functional lymphatics within a murine sarcoma: A molecular and functional evaluation. Cancer Res. 2000, 60, 4324–4327.

25

Ding, J.; Yao, J.; Xue, J. J.; Li, R.; Bao, B.; Jiang, L. P.; Zhu, J. J.; He, Z. W. Tumor-homing cell-penetrating peptide linked to colloidal mesoporous silica encapsulated (–)-epigallocatechin-3-gallate as drug delivery system for breast cancer therapy in vivo. ACS Appl. Mater. Interfaces 2015, 7, 18145–18155.

26

Li, K.; Liu, H.; Gao, W.; Chen, M.; Zeng, Y.; Liu, J. J.; Xu, L.; Wu, D. C. Mulberry-like dual-drug complicated nanocarriers assembled with apogossypolone amphiphilic starch micelles and doxorubicin hyaluronic acid nanoparticles for tumor combination and targeted therapy. Biomaterials 2015, 39, 131–144.

27

Myrberg, H.; Zhang, L. L.; Mäe, M.; Langel, Ü. Design of a tumor-homing cell-penetrating peptide. Bioconjugate Chem. 2008, 19, 70–75.

28

Essler, M.; Ruoslahti, E. Molecular specialization of breast vasculature: A breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proc. Natl. Acad. Sci. USA 2002, 99, 2252–2257.

29

Elmquist, A.; Lindgren, M.; Bartfai, T.; Langel, Ü. VE- cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp. Cell. Res. 2001, 269, 237–244.

30

Jiang, T. Y.; Mo, R.; Bellotti, A.; Zhou, J. P.; Gu, Z. Gel- liposome-mediated co-delivery of anticancer membrane- associated proteins and small-molecule drugs for enhanced therapeutic efficacy. Adv. Funct. Mater. 2014, 24, 2295–2304.

31

Wang, Z. Z.; Chen, Z. W.; Liu, Z.; Shi, P.; Dong, K.; Ju, E. G.; Ren, J. S.; Qu, X. G. A multi-stimuli responsive gold nanocage-hyaluronic platform for targeted photothermal and chemotherapy. Biomaterials 2014, 35, 9678–9688.

32

Zhang, F.; Wan, Y.; Yu, T.; Zhang, F. G.; Shi, Y. F.; Xie, S. H.; Li, Y. G.; Xu, L.; Tu, B.; Zhao, D. Y. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. Angew Chem., Int. Ed. 2007, 46, 7976–7979.

33

Bhang, S. H.; Won, N.; Lee, T. J.; Jin, H.; Nam, J.; Park, J.; Chung, H.; Park, H. S.; Sung, Y. E.; Hahn, S. K. et al. Hyaluronic acid-quantum dot conjugates for in vivo lymphatic vessel imaging. ACS Nano 2009, 3, 1389–1398.

34

Li, J.; Huo, M. R.; Wang, J.; Zhou, J. P.; Mohammad, J. M.; Zhang, Y. L.; Zhu, Q. N.; Waddad, A. Y.; Zhang, Q. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials 2012, 33, 2310–2320.

35

Huber, W.; Koella, J. C. A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Trop. 1993, 55, 257–261.

36

Isacke, C. M.; Yarwood, H. The hyaluronan receptor, CD44. Int. J. Biochem. Cell Biol. 2002, 34, 718–721.

File
nr-10-2-690_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 July 2016
Revised: 07 October 2016
Accepted: 12 October 2016
Published: 10 November 2016
Issue date: February 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This research was supported by National Natural Science Foundation of China (Nos. 21335004, 21475057, 21575061, and 21622505).

Return