Journal Home > Volume 10 , Issue 2

Monolayer molybdenum disulfide (MoS2) has attracted much attention because of the variety of potential applications. However, its controlled growth is still a great challenge. Here, we report a modified chemical vapor deposition method to grow monolayer MoS2. We observed that the quality of the MoS2 crystals could be greatly improved by tuning the carrier gas flow rate during the heating stage. This subtle modification prevents the uncontrollable reaction between the precursors, a critical factor for the growth of high-quality monolayer MoS2. Based on an optimized gas flow rate, the MoS2 coverage and flake size can be controlled by adjusting the growth time.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Role of the carrier gas flow rate in monolayer MoS2 growth by modified chemical vapor deposition

Show Author's information Hengchang Liu1,2,3,4Yuanhu Zhu2( )Qinglong Meng2Xiaowei Lu2Shuang Kong2Zhiwei Huang2Peng Jiang2Xinhe Bao1,2
Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Hi-Tech Park, Pudong, Shanghai 200120, China
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
University of Chinese Academy of Sciences, Beijing 100039, China
ShanghaiTech University, 100 Haike Road, Pudong, Shanghai 201210, China

Abstract

Monolayer molybdenum disulfide (MoS2) has attracted much attention because of the variety of potential applications. However, its controlled growth is still a great challenge. Here, we report a modified chemical vapor deposition method to grow monolayer MoS2. We observed that the quality of the MoS2 crystals could be greatly improved by tuning the carrier gas flow rate during the heating stage. This subtle modification prevents the uncontrollable reaction between the precursors, a critical factor for the growth of high-quality monolayer MoS2. Based on an optimized gas flow rate, the MoS2 coverage and flake size can be controlled by adjusting the growth time.

Keywords: MoS2, monolayer, carrier gas flow rate, modified CVD

References(41)

1

Ji, Q. Q.; Zhang, Y.; Zhang, Y. F.; Liu, Z. F. Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: Engineered substrates from amorphous to single crystalline. Chem. Soc. Rev. 2015, 44, 2587–2602.

2

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

3

Shi, J. P.; Ma, D. L.; Han, G.-F.; Zhang, Y.; Ji, Q. Q.; Gao, T.; Sun, J. Y.; Song, X. J.; Li, C.; Zhang, Y. S. et al. Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 2014, 8, 10196–10204.

4

Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-Ⅵ dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

5

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

6

Li, W. F.; Zhang, G.; Guo, M.; Zhang, Y.-W. Strain-tunable electronic and transport properties of MoS2 nanotubes. Nano Res. 2014, 7, 518–527.

7

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–713.

8

Ma, D. L.; Shi, J. P.; Ji, Q. Q.; Chen, K.; Yin, J. B.; Lin, Y. W.; Zhang, Y.; Liu, M. X.; Feng, Q. L.; Song, X. J. et al. A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Res. 2015, 8, 3662–3672.

9

Zhang, Z. W.; Xie, Y. E.; Peng, Q.; Chen, Y. P. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons. Sci. Rep. 2016, 6, 21639.

10

Li, H.; Lu, G.; Yin, Z. Y.; He, Q. Y.; Li, H.; Zhang, Q.; Zhang, H. Optical identification of single- and few-layer MoS2 sheets. Small 2012, 8, 682–686.

11

Wu, S. F.; Huang, C. M.; Aivazian, G.; Ross, J. S.; Cobden, D. H.; Xu, X. D. Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 2013, 7, 2768–2772.

12

Shi, J. P.; Zhang, X. N.; Ma, D. L.; Zhu, J. B.; Zhang, Y.; Guo, Z. X.; Yao, Y.; Ji, Q. Q.; Song, X. J.; Zhang, Y. S. et al. Substrate facet effect on the growth of monolayer MoS2 on Au foils. ACS Nano 2015, 9, 4017–4025.

13

Ji, Q. Q.; Kan, M.; Zhang, Y.; Guo, Y.; Ma, D. L.; Shi, J. P.; Sun, Q.; Chen, Q.; Zhang, Y. F.; Liu, Z. F. Unravelling orientation distribution and merging behavior of monolayer MoS2 domains on sapphire. Nano Lett. 2015, 15, 198–205.

14

Jeon, J.; Jang, S. K.; Jeon, S. M.; Yoo, G.; Jang, Y. H.; Park, J. H.; Lee, S. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale 2015, 7, 1688–1695.

15

Chen, W.; Zhao, J.; Zhang, J.; Gu, L.; Yang, Z. Z.; Li, X. M.; Yu, H.; Zhu, X. T.; Yang, R.; Shi, D. X. et al. Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 2015, 137, 15632–15635.

16

Wang, S. S.; Rong, Y. M.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J. H. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater. 2014, 26, 6371–6379.

17

Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2014, 2, 131–136.

18

Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

19

Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966–971.

20

Lin, Y. C.; Zhang, W. J.; Huang, J. K.; Liu, K. K.; Lee, Y. H.; Liang, C. T.; Chu, C. W.; Li, L. J. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 2012, 4, 6637–6641.

21

Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.

22

Wang, X. S.; Feng, H. B.; Wu, Y. M.; Jiao, L. Y. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 2013, 135, 5304–5306.

23

Lee, W. Y.; Besmann, T. M.; Stott, M. W. Preparation of MoS2 thin films by chemical vapor deposition. J. Mater. Res. 1994, 9, 1474–1483.

24

Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538– 1544.

25

Cheng, J. X.; Jiang, T.; Ji, Q. Q.; Zhang, Y.; Li, Z. M.; Shan, Y. W.; Zhang, Y. F.; Gong, X.; Liu, W. T.; Wu, S. W. Kinetic nature of grain boundary formation in as-grown MoS2 monolayers. Adv Mater. 2015, 27, 4069–4074.

26

Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.

27

Yoo, Y.; Degregorio, Z. P.; Johns, J. E. Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc. 2015, 137, 14281–14287.

28

van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

29

Cao, D.; Shen, T.; Liang, P.; Chen, X. S.; Shu, H. B. Role of chemical potential in flake shape and edge properties of monolayer MoS2. J. Phys. Chem. C 2015, 119, 4294–4301.

30

Geim, A. K. Random walk to graphene (nobel lecture). Angew. Chem., Int. Ed. 2011, 50, 6966–6985.

31

Verble, J. L.; Wieting, T. J. Lattice mode degeneracy in MoS2 and other layer compounds. Phys. Rev. Lett. 1970, 25, 632–365.

32

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

33

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

34

Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photo­luminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

35

Yang, L.; Cui, X. D.; Zhang, J. Y.; Wang, K.; Shen, M.; Zeng, S. S.; Dayeh, S. A.; Feng, L.; Xiang, B. Lattice strain effects on the optical properties of MoS2 nanosheets. Sci. Rep. 2014, 4, 5649.

36

Liang, L. B.; Meunier, V. First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale 2014, 6, 5394–5401.

37

Yu, Y. F.; Li, C.; Liu, Y.; Su, L. Q.; Zhang, Y.; Cao, L. Y. Controlled scalable synthesis of uniform, high-quality mono­layer and few-layer MoS2 films. Sci. Rep. 2013, 3, 1866.

38

Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J. Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses. Appl. Phys. Lett. 2012, 100, 013106.

39

Cai, Y. Q.; Lan, J. H.; Zhang, G.; Zhang, Y. W. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 2014, 89, 035438.

40

Amani, M.; Chin, M. L.; Birdwell, A. G.; O'Regan, T. P.; Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J.; Dubey, M. Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition. Appl. Phys. Lett. 2013, 102, 193107.

41

Artyukhov, V. I.; Hu, Z. L.; Zhang, Z. H.; Yakobson, B. I. Topochemistry of bowtie- and star-shaped metal dichalcogenide nanoisland formation. Nano Lett. 2016, 16, 3696–3702.

File
nr-10-2-643_ESM.pdf (842.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 August 2016
Revised: 07 October 2016
Accepted: 08 October 2016
Published: 01 December 2016
Issue date: February 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 21273228 and 51290272) and Chinese Postdoctoral Science Foundation (No. 2016M591460).

Return