Journal Home > Volume 10 , Issue 2

Nanoparticles (NPs) with flower-like and frame morphologies were synthesized from CuS, a remarkable transition-metal sulfide. We introduced two kinds of CuS NPs into a nematic liquid crystal (LC) 4-cyano-4'-n-pentylbiphenyl (5CB) and investigated the morphology- and concentration-dependent alignment and electro-optic (E-O) effects of CuS NPs on 5CB. A trace amount of flower-like CuS NPs induced a uniform homeotropic orientation of LC molecules; this is attributable to the obtained desirable compact nanosheet structure. Moreover, both flower-like and frame CuS NPs induced a remarkable improvement in the E-O properties of 5CB, and the flower-like CuS/5CB system exhibited a better performance. The doped CuS NPs in the LC host suppressed the shielding effect and strengthened the electric field, resulting in outstanding E-O properties. At a doping concentration of 0.05 wt.%, CuS NPs were well-dispersed and achieved the optimum E-O performance. This study provides a novel method for inducing a uniform orientation and enhanced E-O properties of LC molecules by doping with extraordinary CuS NPs, leading to potential applications in establishing flexible LC displays.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Effects of morphology and concentration of CuS nanoparticles on alignment and electro-optic properties of nematic liquid crystal

Show Author's information Bin LiuYiran MaDongyu Zhao( )Lihong XuFashun LiuWei Zhou( )Lin Guo( )
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, China

Abstract

Nanoparticles (NPs) with flower-like and frame morphologies were synthesized from CuS, a remarkable transition-metal sulfide. We introduced two kinds of CuS NPs into a nematic liquid crystal (LC) 4-cyano-4'-n-pentylbiphenyl (5CB) and investigated the morphology- and concentration-dependent alignment and electro-optic (E-O) effects of CuS NPs on 5CB. A trace amount of flower-like CuS NPs induced a uniform homeotropic orientation of LC molecules; this is attributable to the obtained desirable compact nanosheet structure. Moreover, both flower-like and frame CuS NPs induced a remarkable improvement in the E-O properties of 5CB, and the flower-like CuS/5CB system exhibited a better performance. The doped CuS NPs in the LC host suppressed the shielding effect and strengthened the electric field, resulting in outstanding E-O properties. At a doping concentration of 0.05 wt.%, CuS NPs were well-dispersed and achieved the optimum E-O performance. This study provides a novel method for inducing a uniform orientation and enhanced E-O properties of LC molecules by doping with extraordinary CuS NPs, leading to potential applications in establishing flexible LC displays.

Keywords: vertical alignment, liquid crystal, CuS nanoparticles, electro-optic properties

References(34)

1

Qi, H.; Hegmann, T. Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays. J. Mater. Chem. 2008, 18, 3288–3294.

2

Bisoyi, H. K.; Kumar, S. Liquid-crystal nanoscience: An emerging avenue of soft self-assembly. Chem. Soc. Rev. 2011, 40, 306–319.

3

Rahimi, M.; Roberts, T. F.; Armas-Pérez, J. C.; Wang, X. G.; Bukusoglu, E.; Abbott, N. L.; de Pablo, J. J. Nanoparticle self-assembly at the interface of liquid crystal droplets. Proc. Natl. Acad. Sci. USA 2015, 112, 5297–5302.

4

Coursault, D.; Grand, J.; Zappone, B.; Ayeb, H.; Lévi, G.; Félidj, N.; Lacaze, E. Linear self-assembly of nanoparticles within liquid crystal defect arrays. Adv. Mater. 2012, 24, 1461–1465.

5

Matt, B.; Pondman, K. M.; Asshoff, S. J.; Ten Haken, B.; Fleury, B.; Katsonis, N. Soft magnets from the self-organization of magnetic nanoparticles in twisted liquid crystals. Angew. Chem., Int. Ed. 2014, 53, 12446–12450.

6

Kim, N.; Kim, D. Y.; Park, M.; Choi, Y. J.; Kim, S.; Lee, S. H.; . Jeong, K. U. Asymmetric organic–inorganic hybrid giant molecule: Hierarchical smectic phase induced from POSS nanoparticles by addition of nematic liquid crystals. J. Phys. Chem. C 2015, 119, 766–774.

7

Chung, Y. F.; Chen, M. Z.; Yang, S. H.; Jeng, S. C. Tunable surface wettability of ZnO nanoparticle arrays for controlling the alignment of liquid crystals. ACS Appl. Mater. Interfaces 2015, 7, 9619–9624.

8

Zhao, D. Y.; Zhou, W.; Cui, X. P.; Tian, Y.; Guo, L.; Yang, H. Alignment of liquid crystals doped with nickel nanoparticles containing different morphologies. Adv. Mater. 2011, 23, 5779–5784.

9

Zhou, W.; Lin, L. J.; Zhao, D. Y.; Guo, L. Synthesis of nickel bowl-like nanoparticles and their doping for inducing planar alignment of a nematic liquid crystal. J. Am. Chem. Soc. 2011, 133, 8389–8391.

10

Liu, H. S.; Jeng, S. C. Liquid crystal alignment by polyhedral oligomeric silsesquioxane (POSS)-polyimide nanocomposites. Opt. Mater. 2013, 35, 1418–1421.

11

Liu, B. Y.; Chen, L. J. Role of surface hydrophobicity in pretilt angle control of polymer-stabilized liquid crystal alignment systems. J. Phys. Chem. C 2013, 117, 13474–13478.

12

Ahmad, F.; Jamil, M.; Lee, J. W.; Jeon, Y. J. Magnetically driven vertical alignment of liquid crystals by ferromagnetic particles. Liq. Cryst. 2015, 42, 233–239.

13

Goel, P.; Upadhyay, P. L.; Biradar, A. M. Induced dielectric relaxation and enhanced electro-optic parameters in Ni nanoparticles-ferroelectric liquid crystal dispersions. Liq. Cryst. 2013, 40, 45–51.

14

Zhang, Y.; Liu, Q. K.; Mundoor, H.; Yuan, Y.; Smalyukh, I. I. Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers. ACS Nano 2015, 9, 3097–3108.

15

Ha, Y. S.; Kim, H. J.; Park, H. G.; Seo, D. S. Enhancement of electro-optic properties in liquid crystal devices via titanium nanoparticle doping. Opt. Exp. 2012, 20, 6448–6455.

16

Nishida, N.; Shiraishi, Y.; Kobayashi, S.; Toshima, N. Fabrication of liquid crystal sol containing capped Ag–Pd bimetallic nanoparticles and their electro-optic properties. J. Phys. Chem. C 2008, 112, 20284–20290.

17

Marino, L.; Marino, S.; Wang, D.; Bruno, E.; Scaramuzza, N. Nonvolatile memory effects in an orthoconic smectic liquid crystal mixture doped with polymer-capped gold nanoparticles. Soft Matter 2014, 10, 3842–3849.

18

Urbanski, M.; Lagerwall, J. P. F. Nanoparticles dispersed in liquid crystals: Impact on conductivity, low-frequency relaxation and electro-optical performance. J. Mater. Chem. C 2016, 4, 3485–3491.

19

Chung, H. K.; Park, H. G.; Ha, Y. S.; Han, J. M.; Lee, J. W.; Seo, D. S. Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion. Liq. Cryst. 2013, 40, 632–638.

20

Wang, L.; He, W. L.; Xiao, X.; Meng, F. G.; Zhang, Y.; Yang, P. Y.; Wang, L. P.; Xiao, J. M.; Yang, H.; Lu, Y. F. Hysteresis-free blue phase liquid-crystal-stabilized by ZnS nanoparticles. Small 2012, 8, 2189–2193.

21

Chandran, A.; Prakash, J.; Naik, K. K.; Srivastava, A. K.; Dabrowski, R.; Czerwiński, M.; Biradar, A. M. Preparation and characterization of MgO nanoparticles/ferroelectric liquid crystal composites for faster display devices with improved contrast. J. Mater. Chem. C 2014, 2, 1844–1853.

22

Goel, P.; Arora, M.; Biradar, A. M. Electro-optic switching in iron oxide nanoparticle embedded paramagnetic chiral liquid crystal via magneto-electric coupling. J. Appl. Phys. 2014, 115, 124905.

23

Gupta, S. K.; Singh, D. P.; Manohar, R. SWCNT doped ferroelectric liquid crystal: The electro-optical properties with enhanced dipolar contribution. Curr. Appl. Phys. 2013, 13, 684–687.

24

García-García, A.; Vergaz, R.; Algorri, J. F.; Quintana, X.; Otón, J. M. Electrical response of liquid crystal cells doped with multi-walled carbon nanotubes. Beilstein J. Nanotechnol. 2015, 6, 396–403.

25

Lee, W. K.; Choi, Y. S.; Kang, Y. G.; Sung, J.; Seo, D. S.; Park, C. Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks. Adv. Funct. Mater. 2011, 21, 3843–3850.

26

Kinkead, B.; Hegmann, T. Effects of size, capping agent, and concentration of CdSe and CdTe quantum dots doped into a nematic liquid crystal on the optical and electro-optic properties of the final colloidal liquid crystal mixture. J. Mater. Chem. 2010, 20, 448–458.

27

Mirzaei, J.; Reznikov, M.; Hegmann, T. Quantum dots as liquid crystal dopants. J. Mater. Chem. 2012, 22, 22350– 22365.

28

Lee, W. K.; Hwang, S. J.; Cho, M. J.; Park, H. G.; Han, J. W.; Song, S.; Jang, J. H.; Seo, D. S. CIS-ZnS quantum dots for self-aligned liquid crystal molecules with superior electro-optic properties. Nanoscale 2013, 5, 193–199.

29

Šetkus, A.; Galdikas, A.; Mironas, A.; Šimkiene, I.; Ancutiene, I.; Janickis, V.; Kaciulis, S.; Mattogno, G.; Ingo, G. M. Properties of CuxS thin film based structures: Influence on the sensitivity to ammonia at room temperatures. Thin Solid Films 2001, 391, 275–281.

30

Basu, M.; Sinha, A. K.; Pradhan, M.; Sarkar, S.; Negishi, Y.; Govind; Pal, T. Evolution of hierarchical hexagonal stacked plates of CuS from liquid–liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting. Environ. Sci. Technol. 2010, 44, 6313–6318.

31

Riha, S. C.; Johnson, D. C.; Prieto, A. L. Cu2Se nanoparticles with tunable electronic properties due to a controlled solid- state phase transition driven by copper oxidation and cationic conduction. J. Am. Chem. Soc. 2011, 133, 1383–1390.

32

Lai, C. H.; Huang, K. W.; Cheng, J. H.; Lee, C. Y.; Hwang, B. J.; Chen, B. J. Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries. J. Mater. Chem. 2010, 20, 6638–6645.

33

Ma, Y. R.; Zhou, W.; Cao, W.; Zheng, J. L.; Guo, L. Preparation of hierarchical Ni@CuS composites and the application of the enhanced catalysis for 4-nitrophenol reduction. Acta Phys. -Chim. Sin. 2015, 31, 1949–1955.

34

Hwang, S. J.; Jeng, S. C.; Yang, C. Y.; Kuo, C. W.; Liao, C. C. Characteristics of nanoparticle-doped homeotropic liquid crystal devices. J. Phys. D: Appl. Phys. 2009, 42, 025102.

File
nr-10-2-618_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 July 2016
Revised: 08 October 2016
Accepted: 08 October 2016
Published: 01 December 2016
Issue date: February 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51203005 and 51673008).

Return