Journal Home > Volume 10 , Issue 4

Organic–inorganic hybrid halide perovskites, such as CH3NH3PbI3, have emerged as an exciting class of materials for solar photovoltaic applications; however, they are currently plagued by insufficient environmental stability. To solve this issue, all-inorganic halide perovskites have been developed and shown to exhibit significantly improved stability. Here, we report a single-step chemical vapor deposition growth of cesium lead halide (CsPbX3) microcrystals. Optical microscopy studies show that the resulting perovskite crystals predominantly adopt a square-platelet morphology. Powder X-ray diffraction (PXRD) studies of the resulting crystals demonstrate a highly crystalline nature, with CsPbCl3, CsPbBr3, and CsPbI3 showing tetragonal, monoclinic, and orthorhombic phases, respectively. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies show that the resulting platelets exhibit well-faceted structures with lateral dimensions of the order of 10–50 µm, thickness around 1 µm, and ultra-smooth surface, suggesting the absence of obvious grain boundaries and the single-crystalline nature of the individual microplatelets. Photoluminescence (PL) images and spectroscopic studies show a uniform and intense emission consistent with the expected band edge transition. Additionally, PL images show brighter emission around the edge of the platelets, demonstrating a wave-guiding effect in high-quality crystals. With a well-defined geometry and ultra-smooth surface, the square platelet structure can function as a whispering gallery mode cavity with a quality factor up to 2, 863 to support laser emission at room temperature. Finally, we demonstrate that such microplatelets can be readily grown on a variety of substrates, including silicon, graphene, and other two-dimensional materials such as molybdenum disulfide, which can readily allow the construction of heterostructure optoelectronic devices, including a graphene/perovskite/ graphene vertically-stacked photodetector with photoresponsivity > 105 A/W. The extraordinary optical properties of CsPbX3 platelets, combined with their ability to be grown on diverse materials to form functional heterostructures, can lead to exciting opportunities for broad optoelectronic applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications

Show Author's information Yiliu Wang1Xun Guan2,3Dehui Li1Hung-Chieh Cheng4Xidong Duan2( )Zhaoyang Lin1Xiangfeng Duan1,5( )
Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesLos AngelesCA90095USA
State Key Laboratory for Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083China
Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesLos AngelesCA90095USA
California NanoSystems InstituteUniversity of CaliforniaLos AngelesLos AngelesCA90095USA

Abstract

Organic–inorganic hybrid halide perovskites, such as CH3NH3PbI3, have emerged as an exciting class of materials for solar photovoltaic applications; however, they are currently plagued by insufficient environmental stability. To solve this issue, all-inorganic halide perovskites have been developed and shown to exhibit significantly improved stability. Here, we report a single-step chemical vapor deposition growth of cesium lead halide (CsPbX3) microcrystals. Optical microscopy studies show that the resulting perovskite crystals predominantly adopt a square-platelet morphology. Powder X-ray diffraction (PXRD) studies of the resulting crystals demonstrate a highly crystalline nature, with CsPbCl3, CsPbBr3, and CsPbI3 showing tetragonal, monoclinic, and orthorhombic phases, respectively. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies show that the resulting platelets exhibit well-faceted structures with lateral dimensions of the order of 10–50 µm, thickness around 1 µm, and ultra-smooth surface, suggesting the absence of obvious grain boundaries and the single-crystalline nature of the individual microplatelets. Photoluminescence (PL) images and spectroscopic studies show a uniform and intense emission consistent with the expected band edge transition. Additionally, PL images show brighter emission around the edge of the platelets, demonstrating a wave-guiding effect in high-quality crystals. With a well-defined geometry and ultra-smooth surface, the square platelet structure can function as a whispering gallery mode cavity with a quality factor up to 2, 863 to support laser emission at room temperature. Finally, we demonstrate that such microplatelets can be readily grown on a variety of substrates, including silicon, graphene, and other two-dimensional materials such as molybdenum disulfide, which can readily allow the construction of heterostructure optoelectronic devices, including a graphene/perovskite/ graphene vertically-stacked photodetector with photoresponsivity > 105 A/W. The extraordinary optical properties of CsPbX3 platelets, combined with their ability to be grown on diverse materials to form functional heterostructures, can lead to exciting opportunities for broad optoelectronic applications.

Keywords: chemical vapor deposition, photoluminescence, inorganic perovskite, photodetection, microplatelets, optical cavity

References(48)

1

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

2

Bai, S.; Wu, Z. W.; Wu, X. J.; Jin, Y. Z.; Zhao, N.; Chen, Z. H.; Mei, Q. Q.; Wang, X.; Ye, Z. Z.; Song, T. et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Res. 2014, 7, 1749–1758.

3

Nie, W. Y.; Tsai, H.; Asadpour, R.; Blancon, J. -C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522–525.

4

Yan, W. B.; Li, Y. L.; Li, Y.; Ye, S. Y.; Liu, Z. W.; Wang, S. F.; Bian, Z. Q.; Huang, C. H. Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer. Nano Res. 2015, 8, 2474–2480.

5

Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. -B.; Duan, H. -S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

6

Tan, Z. -K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692.

7

Zhu, H. M.; Fu, Y. P.; Meng, F.; Wu, X. X.; Gong, Z. Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636–642.

8

Dou, L. T.; Yang, Y. M.; You, J. B.; Hong, Z. R.; Chang, W. -H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404.

9

Wei, H. T.; Fang, Y. J.; Mulligan, P.; Chuirazzi, W.; Fang, H. -H.; Wang, C. C.; Ecker, B. R.; Gao, Y. L.; Loi, M. A.; Cao, L. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 2016, 10, 333–339.

10

Stranks, S. D.; Burlakov, V. M.; Leijtens, T.; Ball, J. M.; Goriely, A.; Snaith, H. J. Recombination kinetics in organic– inorganic perovskites: Excitons, free charge, and subgap states. Phys. Rev. Appl. 2014, 2, 034007.

11

Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic– inorganic CH3NH3PbI3. Science 2013, 342, 344–347.

12

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

13

Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron–hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970.

14

Leijtens, T.; Stranks, S. D.; Eperon, G. E.; Lindblad, R.; Johansson, E. M.; McPherson, I. J.; Rensmo, H.; Ball, J. M.; Lee, M. M.; Snaith, H. J. Electronic properties of meso- superstructured and planar organometal halide perovskite films: Charge trapping, photodoping, and carrier mobility. ACS Nano 2014, 8, 7147–7155.

15

Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

16

Yang, J. L.; Siempelkamp, B. D.; Liu, D. Y.; Kelly, T. L. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 2015, 9, 1955–1963.

17

Deretzis, I.; Alberti, A.; Pellegrino, G.; Smecca, E.; Giannazzo, F.; Sakai, N.; Miyasaka, T.; La Magna, A. Atomistic origins of CH3NH3PbI3 degradation to PbI2 in vacuum. Appl. Phys. Lett. 2015, 106, 131904.

18

Merdasa, A.; Bag, M.; Tian, Y. X.; Källman, E.; Dobrovolsky, A.; Scheblykin, I. G. Super-resolution luminescence microspectroscopy reveals the mechanism of photoinduced degradation in CH3NH3PbI3 perovskite nanocrystals. J. Phys. Chem. C 2016, 120, 10711–10719.

19

Nikl, M.; Nitsch, K.; Chval, J.; Somma, F.; Phani, A. R.; Santucci, S.; Giampaolo, C.; Fabeni, P.; Pazzi, G. P.; Feng, X. Q. Optical and structural properties of ternary nanoaggregates in CsI-PbI2 co-evaporated thin films. J. Phys. : Condens. Matter. 2000, 12, 1939–1946.

20

Somma, F.; Nikl, M.; Nitsch, K.; Giampaolo, C.; Phani, A. R.; Santucci, S. The growth, structure and optical properties of CsI-PbI2 co-evaporated thin films. Superficies y vacío 1999, 9, 62–64.

21

Eperon, G. E.; Paternò, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 2015, 3, 19688–19695.

22

Feng, J. G.; Yan, X. X.; Zhang, Y. F.; Wang, X. D.; Wu, Y. C.; Su, B.; Fu, H. B.; Jiang, L. "Liquid knife" to fabricate patterning single-crystalline perovskite microplates toward high-performance laser arrays. Adv. Mater. 2016, 28, 3732– 3741.

23

Li, D. H.; Wang, G. M.; Cheng, H. -C.; Chen, C. -Y.; Wu, H.; Liu, Y.; Huang, Y.; Duan, X. F. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. Nat. Commun. 2016, 7, 11330.

24

Li, D. H.; Wu, H.; Cheng, H. -C.; Wang, G. M.; Huang, Y.; Duan, X. F. Electronic and ionic transport dynamics in organolead halide perovskites. ACS Nano 2016, 10, 6933– 6941.

25

Wang, G.; Li, D.; Cheng, H. -C.; Li, Y.; Chen, C. -Y.; Yin, A.; Zhao, Z.; Lin, Z.; Wu, H.; He, Q. et al. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Sci. Adv. 2015, 1, e1500613.

26

Akkerman, Q. A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

27

Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.

28

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

29

Zhang, D. D.; Eaton, S. W.; Yu, Y.; Dou, L. T.; Yang, P. D. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2015, 137, 9230–9233.

30

Zhang, D. D.; Yang, Y. M.; Bekenstein, Y.; Yu, Y.; Gibson, N. A.; Wong, A. B.; Eaton, S. W.; Kornienko, N.; Kong, Q.; Lai, M. L. et al. Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions. J. Am. Chem. Soc. 2016, 138, 7236–7239.

31

Akkerman, Q. A.; Motti, S. G.; Srimath Kandada, A. R.; Mosconi, E.; D'Innocenzo, V.; Bertoni, G.; Marras, S.; Kamino, B. A.; Miranda, L.; De Angelis, F. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 2016, 138, 1010–1016.

32

Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P. D.; Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 2015, 137, 16008–16011.

33

Shamsi, J.; Dang, Z. Y.; Bianchini, P.; Canale, C.; Di Stasio, F.; Brescia, R.; Prato, M.; Manna, L. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 2016, 138, 7240–7243.

34

Eaton, S. W.; Lai, M. L.; Gibson, N. A.; Wong, A. B.; Dou, L. T.; Ma, J.; Wang, L. -W.; Leone, S. R.; Yang, P. D. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA 2016, 113, 1993–1998.

35

Fu, Y. P.; Zhu, H. M.; Stoumpos, C. C.; Ding, Q.; Wang, J.; Kanatzidis, M. G.; Zhu, X. Y.; Jin, S. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano 2016, 10, 7963–7972.

36

Xing, J.; Liu, X. F.; Zhang, Q.; Ha, S. T.; Yuan, Y. W.; Shen, C.; Sum, T. C.; Xiong, Q. H. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room- temperature nanolasers. Nano Lett. 2015, 15, 4571–4577.

37

Zhang, Q.; Su, R.; Liu, X. F.; Xing, J.; Sum, T. C.; Xiong, Q. H. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 2016, 26, 6238–6245.

38

Fujii, Y.; Hoshino, S.; Yamada, Y.; Shirane, G. Neutron- scattering study on phase transitions of CsPbCl3. Phys. Rev. B 1974, 9, 4549–4559.

39

Møller, C. K. Crystal structure and photoconductivity of caesium plumbohalides. Nature 1958, 182, 1436.

40

Sakata, M.; Nishiwaki, T.; Harada, J. Neutron diffraction study of the structure of cubic CsPbBr3. J. Phys. Soc. Jpn. 1979, 47, 232–233.

41

Trots, D. M.; Myagkota, S. V. High-temperature structural evolution of caesium and rubidium triiodoplumbates. J. Phys. Chem. Solids 2008, 69, 2520–2526.

42

Agarwal, R.; Barrelet, C. J.; Lieber, C. M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 2005, 5, 917–920.

43

Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030.

44

Shaw, J. C.; Zhou, H. L.; Chen, Y.; Weiss, N. O.; Liu, Y.; Huang, Y.; Duan, X. F. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014, 7, 511–517.

45

Zhou, H. L.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Weiss, N. O.; Lin, Z. Y.; Huang, Y. et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 2015, 15, 709–713.

46

Cheng, H. -C.; Wang, G.; Li, D.; He, Q.; Yin, A.; Liu, Y.; Wu, H.; Ding, M.; Huang, Y.; Duan, X. van der Waals heterojunction devices based on organohalide perovskites and two-dimensional materials. Nano Lett. 2016, 16, 367–373.

47

Li, L.; Wu, P. C.; Fang, X. S.; Zhai, T. Y.; Dai, L.; Liao, M. Y.; Koide, Y.; Wang, H. Q.; Bando, Y.; Golberg, D. Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors. Adv. Mater. 2010, 22, 3161–3165.

47

Li, D. H.; Zhang, J.; Zhang, Q.; Xiong, Q. H. Electric- field-dependent photoconductivity in CdS nanowires and nanobelts: Exciton ionization, Franz–Keldysh, and Stark effects. Nano Lett. 2012, 12, 2993–2999.

File
nr-10-4-1223_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 August 2016
Revised: 30 September 2016
Accepted: 04 October 2016
Published: 12 November 2016
Issue date: April 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

We acknowledge the support from the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering through Award DE-SC0008055. The effort at Hunan University was supported by National Natural Science Foundation of China (No. 61528403).

Return