Journal Home > Volume 10 , Issue 2

Emerging hierarchical MoS2/pillared-montmorillonite (MoS2/PMMT) hybrid nanosheets were successfully prepared through facile in-situ hydrothermal synthesis of MoS2 within the interlayer of cetyltrimethylammonium bromide PMMT, and their catalytic performance was evaluated by the reduction reaction of 4-nitrophenol (4-NP) using NaBH4 as a reductant. Microstructure and morphology characterization indicated that MoS2/PMMT exhibited hybrid-stacked layered structures with an interlayer spacing of 1.29 nm, and the MoS2 nanosheets were intercalated within the montmorillonite (MMT) layers, with most of the edges exposed to the outside. The catalytic activity and stability of MoS2/PMMT were both enhanced by the MMT. With the MoS2/PMMT as the catalyst, the apparent reaction rate constant of the 4-NP reduction was 0.723 min-1 and was maintained at ~0.679 min-1 after five reaction cycles. The structural evolution of MoS2/PMMT and the possible catalysis mechanism for the reduction reaction of 4-NP were investigated. The as-prepared MoS2/PMMT hybrid nanosheets are promising candidates for catalytic application in the water-treatment and biomedical fields. The strategy developed in this study can provide insights for designing hybrid nanosheets with diverse heterogeneous two-dimensional (2D) nanomaterials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hierarchical MoS2 intercalated clay hybrid nanosheets with enhanced catalytic activity

Show Author's information Kang Peng1,2,§Liangjie Fu1,2,§Huaming Yang1,2,3( )Jing Ouyang1,2Aidong Tang4( )
Centre for Mineral Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
Hunan Key Lab of Mineral Materials & Application, Central South University, Changsha 410083, China
State Key Lab of Powder Metallurgy, Central South University, Changsha 410083, China
School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China

§ These authors contributed equally to this work.

Abstract

Emerging hierarchical MoS2/pillared-montmorillonite (MoS2/PMMT) hybrid nanosheets were successfully prepared through facile in-situ hydrothermal synthesis of MoS2 within the interlayer of cetyltrimethylammonium bromide PMMT, and their catalytic performance was evaluated by the reduction reaction of 4-nitrophenol (4-NP) using NaBH4 as a reductant. Microstructure and morphology characterization indicated that MoS2/PMMT exhibited hybrid-stacked layered structures with an interlayer spacing of 1.29 nm, and the MoS2 nanosheets were intercalated within the montmorillonite (MMT) layers, with most of the edges exposed to the outside. The catalytic activity and stability of MoS2/PMMT were both enhanced by the MMT. With the MoS2/PMMT as the catalyst, the apparent reaction rate constant of the 4-NP reduction was 0.723 min-1 and was maintained at ~0.679 min-1 after five reaction cycles. The structural evolution of MoS2/PMMT and the possible catalysis mechanism for the reduction reaction of 4-NP were investigated. The as-prepared MoS2/PMMT hybrid nanosheets are promising candidates for catalytic application in the water-treatment and biomedical fields. The strategy developed in this study can provide insights for designing hybrid nanosheets with diverse heterogeneous two-dimensional (2D) nanomaterials.

Keywords: MoS2, hydrothermal synthesis, heterogeneous catalysis, pillared montmorillonite, hybrid nanosheets

References(61)

1

Naguib, M.; Gogotsi, Y. Synthesis of two-dimensional materials by selective extraction. Acc. Chem. Res. 2015, 48, 128-135.

2

Wang, F. D.; Wang, Y. Y.; Liu, Y. -H.; Morrison, P. J.; Loomis, R. A.; Buhro, W. E. Two-dimensional semiconductor nanocrystals: Properties, templated formation, and magic-size nanocluster intermediates. Acc. Chem. Res. 2015, 48, 13-21.

3

Liu, D.; Long, Y. -T. Superior catalytic activity of electrochemically reduced graphene oxide supported iron phthalocyanines toward oxygen reduction reaction. ACS Appl. Mater. Interfaces 2015, 7, 24063-24068.

4

Liu, D.; Zhang, C. J.; Wang, F.; Huang, Z. Y.; Zhang, N. S.; Zhou, H. H.; Kuang, Y. F. In situ preparation of graphene oxide supported Pd nanoparticles in an ionic liquid and the long-term catalytic stability for the Heck reaction. J. Mater. Chem. A 2015, 3, 16583-16589.

5

Kuang, S. Y.; Chen, J.; Cheng, X. B.; Zhu, G.; Wang, Z. L. Two-dimensional rotary triboelectric nanogenerator as a portable and wearable power source for electronics. Nano Energy 2015, 17, 10-16.

6

Yang, J. -H.; Zhang, Y.; Yin, W. -J.; Gong, X. G.; Yakobson, B. I.; Wei, S. -H. Two-dimensional sis layers with promising electronic and optoelectronic properties: Theoretical prediction. Nano Lett. 2016, 16, 1110-1117.

7

Zellner, A.; Suntz, R.; Deutschmann, O. Two-dimensional spatial resolution of concentration profiles in catalytic reactors by planar laser-induced fluorescence: No reduction over diesel oxidation catalysts. Angew. Chem., Int. Ed. 2015, 54, 2653-2655.

8

Rao, C. N. R.; Gopalakrishnan, K.; Maitra, U. Comparative study of potential applications of graphene, MoS2, and other two-dimensional materials in energy devices, sensors, and related areas. ACS Appl. Mater. Interfaces 2015, 7, 7809-7832.

9

Yuan, H. T.; Wang, H. T.; Cui, Y. Two-dimensional layered chalcogenides: From rational synthesis to property control via orbital occupation and electron filling. Acc. Chem. Res. 2015, 48, 81-90.

10

Wang, L. Z.; Sasaki, T. Titanium oxide nanosheets: Graphene analogues with versatile functionalities. Chem. Rev. 2014, 114, 9455-9486.

11

Ma, R. Z.; Sasaki, T. Two-dimensional oxide and hydroxide nanosheets: Controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc. Chem. Res. 2015, 48, 136-143.

12

Sun, Y. F.; Gao, S.; Lei, F. C.; Xiao, C.; Xie, Y. Ultrathin two-dimensional inorganic materials: New opportunities for solid state nanochemistry. Acc. Chem. Res. 2015, 48, 3-12.

13

Guardia, L.; Paredes, J. I.; Munuera, J. M.; Villar-Rodil, S.; Ayán-Varela, M.; Martínez-Alonso, A.; Tascón, J. M. D. Chemically exfoliated MoS2 nanosheets as an efficient catalyst for reduction reactions in the aqueous phase. ACS Appl. Mater. Interfaces 2014, 6, 21702-21710.

14

Bai, S.; Wang, L. M.; Chen, X. Y.; Du, J. T.; Xiong, Y. J. Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 2015, 8, 175-183.

15

Li, X. Y.; Fu, L. J.; Ouyang, J.; Yang, H. M. Microwave-assisted synthesis and interfacial features of CdS/kaolinite nanocomposite. Colloid Surf. A Physicochem. Eng. Asp. 2014, 443, 72-79.

16

Li, J. Y.; Hou, Y.; Gao, X. F.; Guan, D. S.; Xie, Y. Y.; Chen, J. H.; Yuan, C. A three-dimensionally interconnected carbon nanotube/layered MoS2 nanohybrid network for lithium ion battery anode with superior rate capacity and long-cycle-life. Nano Energy 2015, 16, 10-18.

17

Liao, L.; Zhu, J.; Bian, X. J.; Zhu, L.; Scanlon, M. D.; Girault, H. H.; Liu, B. H. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv. Funct. Mater. 2013, 23, 5326-5333.

18

Tan, Y. W.; Liu, P.; Chen, L. Y.; Cong, W. T.; Ito, Y.; Han, J. H.; Guo, X. W.; Tang, Z.; Fujita, T.; Hirata, A. et al. Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. Adv. Mater. 2014, 26, 8023-8028.

19

Liu, C. B.; Wang, L. L.; Tang, Y. H.; Luo, S. L.; Liu, Y. T.; Zhang, S. Q.; Zeng, Y. X.; Xu, Y. Z. Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2015, 164, 1-9.

20

Wang, J. F.; Cheng, Q. F.; Lin, L.; Jiang, L. Synergistic toughening of bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre. ACS Nano 2014, 8, 2739-2745.

21

Peng, K.; Fu, L. J.; Yang, H. M.; Ouyang, J. Perovskite LaFeO3/montmorillonite nanocomposites: Synthesis, interface characteristics and enhanced photocatalytic activity. Sci. Rep. 2016, 6, 19723.

22

Sun, S. M.; Wang, W. Z.; Jiang, D.; Zhang, L.; Li, X. M.; Zheng, Y. L.; An, Q. Bi2WO6 quantum dot-intercalated ultrathin montmorillonite nanostructure and its enhanced photocatalytic performance. Nano Res. 2014, 7, 1497-1506.

23

Michalik-Zym, A.; Dula, R.; Duraczyńska, D.; Kryściak-Czerwenka, J.; Machej, T.; Socha, R. P.; Włodarczyk, W.; Gaweł, A.; Matusik, J.; Bahranowski, K. et al. Active, selective and robust Pd and/or Cr catalysts supported on Ti-, Zr- or[Ti, Zr]-pillared montmorillonites for destruction of chlorinated volatile organic compounds. Appl. Catal. B: Environ. 2015, 174-175, 293-307.

24

Arancibia-Miranda, N.; Baltazar, S. E.; García, A.; Muñoz-Lira, D.; Sepúlveda, P.; Rubio, M. A.; Altbir, D. Nanoscale zero valent supported by zeolite and montmorillonite: Template effect of the removal of lead ion from an aqueous solution. J. Hazard. Mater. 2016, 301, 371-380.

25

Feng, S. -S.; Mei, L.; Anitha, P.; Gan, C. W.; Zhou, W. Y. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of docetaxel. Biomaterials 2009, 30, 3297-3306.

26

Li, C. C.; Fu, L. J.; Ouyang, J.; Tang, A. D.; Yang, H. M. Kaolinite stabilized paraffin composite phase change materials for thermal energy storage. Appl. Clay Sci. 2015, 115, 212-220.

27

Liu, S. Y.; Yang, H. M. Porous ceramic stabilized phase change materials for thermal energy storage. RSC Adv. 2016, 6, 48033-48042.

28

Liu, S. Y.; Yang, H. M. Composite of coal-series kaolinite and capric-lauric acid as form-stable phase-change material. Energy Technol. 2015, 3, 77-83.

29

Zhang, Y.; Tang, A. D.; Yang, H. M.; Ouyang, J. Applications and interfaces of halloysite nanocomposites. Appl. Clay Sci. 2016, 119, 8-17.

30

Zhou, Z.; Ouyang, J.; Yang, H. M.; Tang, A. D. Three-way catalytic performances of Pd loaded halloysite-Ce0.5Zr0.5O2 hybrid materials. Appl. Clay Sci. 2016, 121-122, 63-70.

31

Jin, J.; Fu, L. J.; Yang, H. M.; Ouyang, J. Carbon hybridized halloysite nanotubes for high-performance hydrogen storage capacities. Sci. Rep. 2015, 5, 12429.

32

Li, X. Y.; Yang, Q.; Ouyang, J.; Yang, H. M.; Chang, S. Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier. Appl. Clay Sci. 2016, 126, 306-312.

33

Niu, M. Y.; Li, X. Y.; Ouyang, J.; Yang, H. M. Lithium orthosilicate with halloysite as silicon source for high temperature CO2 capture. RSC Adv. 2016, 6, 44106-44112.

34

Li, X. Y.; Yang, H. M. Morphology-controllable Li2SiO3 nanostructures. Crystengcomm 2014, 16, 4501-4507.

35

He, X.; Yang, H. M. Fluorescence and room temperature activity of Y2O3: (Eu3+, Au3+)/palygorskite nanocomposite. Dalton Trans. 2015, 44, 1673-1679.

36

He, X.; Wang, J. J.; Shu, Z.; Tang, A. D.; Yang, H. M. Y2O3 functionalized natural palygorskite as an adsorbent for methyl blue removal. RSC Adv. 2016, 6, 41765-41771.

37

Fu, L. J.; Huo, C. L.; He, X.; Yang, H. M. Au encapsulated into Al-MCM-41 mesoporous material: In situ synthesis and electronic structure. RSC Adv. 2015, 5, 20414-20423.

38

Ding, W. J.; Ouyang, J.; Yang, H. M. Synthesis and characterization of nesquehonite (MgCO3·3H2O) powders from natural talc. Powder Technol. 2016, 292, 169-175.

39

Peng, K.; Zhang, J. Y.; Yang, H. M.; Ouyang, J. Acid-hybridized expanded perlite as a composite phase-change material in wallboards. RSC Adv. 2015, 5, 66134-66140.

40

Peng, K.; Lv, C. Z.; Yang, H. M. Novel preparation of glass ceramics from amorphized tungsten tailings. Ceram. Int. 2014, 40, 10291-10296.

41

Peng, K.; Yang, H. M.; Ouyang, J. Tungsten tailing powders activated for use as cementitious material. Powder Technol. 2015, 286, 678-683.

42

Ding, W. J.; Yang, H. M.; Ouyang, J. Mineral carbonation of a desulfurization residue for CO2 sequestration. RSC Adv. 2015, 5, 67184-67194.

43

Liu, L. M.; Yang, W. Y.; Sun, W. Z.; Li, Q.; Shang, J. K. Creation of Cu2O@TiO2 composite photocatalysts with p-n heterojunctions formed on exposed Cu2O facets, their energy band alignment study, and their enhanced photocatalytic activity under illumination with visible light. ACS Appl. Mater. Interfaces 2015, 7, 1465-1476.

44

Lv, J. J.; Wang, A. J.; Ma, X. H.; Xiang, R. Y.; Chen, J. R.; Feng, J. J. One-pot synthesis of porous Pt-Au nanodendrites supported on reduced graphene oxide nanosheets toward catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2015, 3, 290-296.

45

Qiu, Y. F.; Ma, Z.; Hu, P. A. Environmentally benign magnetic chitosan/Fe3O4 composites as reductant and stabilizer for anchoring Au NPs and their catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2014, 2, 13471-13478.

46

Li, X. Y.; Ouyang, J.; Zhou, Y. H.; Yang, H. M. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies. Sci. Rep. 2015, 5, 13763.

47

Bae, S.; Gim, S.; Kim, H.; Hanna, K. Effect of NaBH4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol. Appl. Catal. B: Environ. 2016, 182, 541-549.

48

Li, X. Y.; Tang, A. D. Pd modified kaolinite nanocomposite as a hydrogenation catalyst. RSC Adv. 2016, 6, 15585-15591.

49

Peng, K.; Fu, L. J.; Ouyang, J.; Yang, H. M. Emerging parallel dual 2D composites: Natural clay mineral hybridizing MoS2 and interfacial structure. Adv. Funct. Mater. 2016, 26, 2666-2675.

50

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385-1390.

51

Li, X. Y.; Yang, H. M. Pd hybridizing ZnO/kaolinite nanocomposites: Synthesis, microstructure, and enhanced photocatalytic property. Appl. Clay Sci. 2014, 100, 43-49.

52

Newaz, A. K. M.; Prasai, D.; Ziegler, J. I.; Caudel, D.; Robinson, S.; Haglund., R. F., Jr.; Bolotin, K. I. Electrical control of optical properties of monolayer MoS2. Solid State Commun. 2013, 155, 49-52.

53

Song, J. -M.; Zhang, S. -S.; Yu, S. -H. Multifunctional Co0.85Se-Fe3O4 nanocomposites: Controlled synthesis and their enhanced performances for efficient hydrogenation of p-nitrophenol and adsorbents. Small 2014, 10, 717-724.

54

Jiang, F.; Li, R. M.; Cai, J. H.; Xu, W.; Cao, A. M.; Chen, D. Q.; Zhang, X.; Wang, C. R.; Shu, C. Y. Ultrasmall Pd/Au bimetallic nanocrystals embedded in hydrogen-bonded supramolecular structures: Facile synthesis and catalytic activities in the reduction of 4-nitrophenol. J. Mater. Chem. A 2015, 3, 19433-19438.

55

Shen, H.; Duan, C. T.; Guo, J.; Zhao, N.; Xu, J. Facile in situ synthesis of silver nanoparticles on boron nitride nanosheets with enhanced catalytic performance. J. Mater. Chem. A 2015, 3, 16663-16669.

56

Ye, W. C.; Yu, J.; Zhou, Y. X.; Gao, D. Q.; Wang, D. A.; Wang, C. M.; Xue, D. S. Green synthesis of Pt-Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction. Appl. Catal. B: Environ. 2016, 181, 371-378.

57

Cheng, Z. H.; He, B. Z.; Zhou, L. A general one-step approach for in situ decoration of MoS2 nanosheets with inorganic nanoparticles. J. Mater. Chem. A 2015, 3, 1042-1048.

58

Lin, T. R.; Wang, J.; Guo, L. Q.; Fu, F. F. Fe3O4@MoS2 core-shell composites: Preparation, characterization, and catalytic application. J. Phys. Chem. C 2015, 119, 13658-13664.

59

Hu, H. W.; Xin, J. H.; Hu, H.; Wang, X. W. Structural and mechanistic understanding of an active and durable graphene carbocatalyst for reduction of 4-nitrophenol at room temperature. Nano Res. 2015, 8, 3992-4006.

60

Xiong, W.; Sikdar, D.; Yap, L. W.; Guo, P. Z.; Premaratne, M.; Li, X. Y.; Cheng, W. L. Matryoshka-caged gold nanorods: Synthesis, plasmonic properties, and catalytic activity. Nano Res. 2016, 9, 415-423.

61

Xia, J. W.; He, G. Y.; Zhang, L. L.; Sun, X. Q.; Wang, X. Hydrogenation of nitrophenols catalyzed by carbon black-supported nickel nanoparticles under mild conditions. Appl. Catal. B: Environ. 2016, 180, 408-415.

File
nr-10-2-570_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 August 2016
Revised: 25 September 2016
Accepted: 07 October 2016
Published: 09 December 2016
Issue date: February 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (No. 51225403), the National Natural Science Foundation of China (No. 41572036), the State Key Laboratory of Powder Metallurgy, Central South University (2015-19) and the Hunan Provincial Science and Technology Project (No. 2015TP1006).

Return