Journal Home > Volume 10 , Issue 2

Two-dimensional (2D) layered materials, transition-metal dichalcogenides, and black phosphorus have attracted considerable interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to the remarkable optical properties of these materials and their prospects for new devices. Herein, we report the anisotropic and thickness-dependent optical properties of a 2D layered monochalcogenide of germanium sulfide (GeS). Three Raman-scattering peaks corresponding to the B3g, Ag1, and Ag2 modes with a strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at ~1.66 eV that originates from the direct optical transition in GeS at room temperature. The polarization-dependent characteristics of the PL, which are revealed for the first time, along with the demonstration of anisotropic absorption, indicate an obvious anisotropic optical transition near the band edge of GeS, which is supported by density functional theory calculations. The significantly thickness-dependent PL is observed and discussed. This anisotropic layered GeS presents opportunities for the discovery of new physical phenomena and will find applications that exploit its anisotropic properties, such as polarization-sensitive photodetectors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Anisotropic optical and electronic properties of two-dimensional layered germanium sulfide

Show Author's information Dezhi Tan1( )Hong En Lim1Feijiu Wang1Nur Baizura Mohamed1Shinichiro Mouri1Wenjin Zhang1Yuhei Miyauchi1Mari Ohfuchi2Kazunari Matsuda1( )
Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
Fujitsu Laboratories Ltd., Atsugi 243-0197, Japan

Abstract

Two-dimensional (2D) layered materials, transition-metal dichalcogenides, and black phosphorus have attracted considerable interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to the remarkable optical properties of these materials and their prospects for new devices. Herein, we report the anisotropic and thickness-dependent optical properties of a 2D layered monochalcogenide of germanium sulfide (GeS). Three Raman-scattering peaks corresponding to the B3g, Ag1, and Ag2 modes with a strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at ~1.66 eV that originates from the direct optical transition in GeS at room temperature. The polarization-dependent characteristics of the PL, which are revealed for the first time, along with the demonstration of anisotropic absorption, indicate an obvious anisotropic optical transition near the band edge of GeS, which is supported by density functional theory calculations. The significantly thickness-dependent PL is observed and discussed. This anisotropic layered GeS presents opportunities for the discovery of new physical phenomena and will find applications that exploit its anisotropic properties, such as polarization-sensitive photodetectors.

Keywords: photoluminescence, 2D layered materials, germanium sulfide, anisotropic optical property, polarized optical spectroscopy

References(43)

1

Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical P-N junction. Nat. Nanotechnol. 2015, 10, 707-713.

2

Nemilentsau, A.; Low, T.; Hanson, G. Anisotropic 2D materials for tunable hyperbolic plasmonics. Phys. Rev. Lett. 2016, 116, 066804.

3

Son, Y. -W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347-349.

4

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216-226.

5

Xia, F. N., Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

6

Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517-521.

7

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.

8

Lorchat, E.; Froehlicher, G.; Berciaud, S. Splitting of interlayer shear modes and photon energy dependent anisotropic Raman response in N-layer ReSe2 and ReS2. ACS Nano 2016, 10, 2752-2760.

9

Shi, G. S.; Kioupakis, E. Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe. Nano Lett. 2015, 15, 6926-6931.

10

Mannix, A. J.; Zhou, X. -F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513-1516.

11

Lan, C. Y.; Li, C.; Yin, Y.; Guo, H. Y.; Wang, S. Synthesis of single-crystalline GeS nanoribbons for high sensitivity visible-light photodetectors. J. Mater. Chem. C 2015, 3, 8074-8079.

12

Ulaganathan, R. K.; Lu, Y. -Y.; Kuo, C. -J.; Tamalampudi, S. R.; Sankar, R.; Boopathi, K. M.; Anand, A.; Yadav, K.; Mathew, R. J.; Liu, C. -R. et al. High photosensitivity and broad spectral response of multi-layered germanium sulfide transistors. Nanoscale 2016, 8, 2284-2292.

13

Gomes, L. C.; Carvalho, A. Phosphorene analogues: Isoelectronic two-dimensional group-Ⅳ monochalcogenides with orthorhombic structure. Phys. Rev. B 2015, 92, 085406.

14

Gomes, L. C.; Carvalho, A.; Castro Neto, A. H. Enhanced piezoelectricity and modified dielectric screening of two-dimensional group-Ⅳ monochalcogenides. Phys. Rev. B 2015, 92, 214103.

15

Makinistian, L.; Albanesi, E. A. First-principles calculations of the band gap and optical properties of germanium sulfide. Phys. Rev. B 2006, 74, 045206.

16

Tuttle, B. R.; Alhassan, S. M.; Pantelides, S. T. Large excitonic effects in group-Ⅳ sulfide monolayers. Phys. Rev. B 2015, 92, 235405.

17

Li, F.; Liu, X. H; Wang, Y.; Li, Y. F. Germanium monosulfide monolayer: A novel two-dimensional semiconductor with a high carrier mobility. J. Mater. Chem. C 2016, 4, 2155-2159.

18

Zhang, S. L.; Wang, N.; Liu, S. G.; Huang, S. P.; Zhou, W. H.; Cai, B.; Xie, M. Q.; Yang, Q.; Chen, X. P.; Zeng, H. B. Two-dimensional GeS with tunable electronic properties via external electric field and strain. Nanotechnology 2016, 27, 274001.

19

Gomes, L. C.; Carvalho, A.; Castro Neto, A. H. Vacancies and oxidation of two-dimensional group-Ⅳ monochalcogenides. Phys. Rev. B 2016, 94, 054103.

20

Vaughn, D. D.; Patel, R. J.; Hickner, M. A.; Schaak, R. E. Single-crystal colloidal nanosheets of GeS and GeSe. J. Am. Chem. Soc. 2010, 132, 15170-15172.

21

Wu, J. X.; Mao, N. N.; Xie, L. M.; Xu, H.; Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., Int. Ed. 2015, 54, 2366-2369.

22

Ribeiro, H. B.; Pimenta, M. A.; de Matos, C. J. S.; Moreira, R. L.; Rodin, A. S.; Zapata, J. D.; de Souza, E. A. T.; Castro Neto, A. H. Unusual angular dependence of the Raman response in black phosphorus. ACS Nano 2015, 9, 4270-4276.

23

Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235-246.

24

Zhang, X.; Tan, Q. -H.; Wu, J. -B.; Shi, W.; Tan, P. -H. Review on the Raman spectroscopy of different types of layered materials. Nanoscale 2016, 8, 6435-6450.

25

Luo, X.; Lu, X.; Koon, G. K. W.; Castro Neto, A. H.; Özyilmaz, B.; Xiong, Q. H.; Quek, S. Y. Large frequency change with thickness in interlayer breathing mode-significant interlayer interactions in few layer black phosphorus. Nano Lett. 2015, 15, 3931-3938.

26

Wang, Y. L.; Cong, C. X.; Fei, R. X.; Yang, W. H.; Chen, Y.; Cao, B. C.; Yang, L.; Yu, T. Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorus. Nano Res. 2015, 8, 3944-3953.

27

Wiley, J. D.; Buekel, W. J.; Schmidt, R. L. Infrared reflectivity and Raman scattering in GeS. Phys. Rev. B 1976, 13, 2489-2496.

28

Hsueh, H. C.; Warren, M. C.; Vass, H.; Ackland, G. J.; Clark, S. J.; Crain, J. Vibrational properties of the layered semiconductor germanium sulfide under hydrostatic pressure: Theory and experiment. Phys. Rev. B 1996, 53, 14806-14817.

29

Chandrasekhar, H. R.; Humphreys, R. G.; Cardona, M. Pressure dependence of the Raman spectra of the Ⅳ-Ⅵ layer compounds GeS and GeSe. Phys. Rev. B 1977, 16, 2981-2983.

30

Kim, J.; Lee, J. -U.; Lee, J.; Park, H. J.; Lee, Z.; Lee, C.; Cheong, H. Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus. Nanoscale 2015, 7, 18708-18715.

31

Ling, X.; Liang, L. B.; Huang, S. X.; Puretzky, A. A.; Geohegan, D. B.; Sumpter, B. G.; Kong, J.; Meunier, V.; Dresselhaus, M. S. Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Lett. 2015, 15, 4080-4088.

32

Xia, J.; Li, X. -Z.; Huang, X.; Mao, N. N.; Zhu, D. -D.; Wang, L.; Xu, H.; Meng, X. -M. Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses. Nanoscale 2016, 8, 2063-2070.

33

Xu, R. J.; Zhang, S.; Wang, F.; Yang, J.; Wang, Z.; Pei, J. J.; Myint, Y. W.; Xing, B. B.; Yu, Z. F.; Fu, L. et al. Extraordinarily bound quasi-one-dimensional trions in two-dimensional phosphorene atomic semiconductors. ACS Nano 2016, 10, 2046-2053.

34

Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634-638.

35

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

36

Yuan, L.; Huang, L. B. Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale 2015, 7, 7402-7408.

37

Del Pozo-Zamudio, O.; Schwarz, S.; Sich, M.; Akimov, I. A.; Bayer, M.; Schofield, R. C.; Chekhovich, E. A.; Robinson, B. J.; Kay, N. D.; Kolosov, O. V. et al. Photoluminescence of two-dimensional GaTe and GaSe films. 2D Mater. 2015, 2, 035010.

38

Mudd, G. W.; Svatek, S. A.; Ren, T. H.; Patanè, A.; Makarovsky, O.; Eaves, L.; Beton, P. H.; Kovalyuk, Z. D.; Lashkarev, G. V.; Kudrynskyi, Z. R. et al. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement. Adv. Mater. 2013, 25, 5714-5718.

39

Eakin, R. T. Interference in transmission spectra of overlapping Lorentzian lines. J. Quant. Spectrosc. Radiat. Transfer 1988, 39, 225-236.

40

Süleymanov, R. A.; Ellialtíoǧlu, Ş.; Akínoǧlu, B. G. Layered semiconductor GeS as a birefringent stratified medium. Phys. Rev. B 1995, 52, 7806-7809.

41

Ling, X.; Huang, S. X.; Hasdeo, E. H.; Liang, L. B.; Parkin, W. M.; Tatsumi, Y.; Nugraha, A. R. T.; Puretzky, A. A.; Das, P. M.; Sumpter, B. G. et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano Lett. 2016, 16, 2260-2267.

42

Malone, B. D.; Kaxiras, E. Quasiparticle band structures and interface physics of SnS and GeS. Phys. Rev. B 2013, 87, 245312.

43

Zhang, S.; Yang, J.; Xu, R. J.; Wang, F.; Li, W. F.; Ghufran, M.; Zhang, Y. -W.; Yu, Z. F.; Zhang, G.; Qin, Q. H. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590-9596.

File
nr-10-2-546_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 August 2016
Revised: 05 October 2016
Accepted: 06 October 2016
Published: 08 December 2016
Issue date: February 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This study was supported by the Grant-in-Aid for JSPS KAKENHI (Nos. 25400324, 24681031, 15K13500, 26107522, 25246010, and 15F15313) and by Precursory Research for Embryonic Science and Technology (PRESTO) from the Japan Science and Technology Agency (JST). The authors thank E. Iso and Y. Nakata for support of polarized Raman spectroscopy.

Return