Journal Home > Volume 10 , Issue 2

Catheter-associated urinary tract infections (CAUTIs) are among the most common bacterial infections associated with medical devices. In the current study, the synthesis, coating, antibiofilm properties, and biocompatibility of urinary catheters coated with Zn-doped CuO (Zn0.12Cu0.88O) nanoparticles (NPs) were examined. The doped NPs were synthesized and subsequently deposited on the catheter by the sonochemical method. The coated catheters displayed high antibiofilm activity and promising biocompatibility, as indicated by low in vitro cytotoxicity, negligible associated cytokine secretion, and absence of detectable irritation. The biocompatibility and ability of the Zn-doped CuO coating to inhibit biofilm formation were also evaluated in vivo using a rabbit model. Rabbits catheterized with uncoated catheters scored positive for CAUTI by day 4 of the experiment. In contrast, rabbits catheterized with Zn-doped CuO-coated catheters did not exhibit CAUTI until day 7 or remained completely uninfected for the whole duration of the 7-day experiment. Furthermore, the in vivo biocompatibility assays and examinations supported the biosafety of Zn-doped CuO-coated catheters. Taken together, these data highlight the potential of Zn-doped CuO nanocomposite as effective antibiofilm compound.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Catheters coated with Zn-doped CuO nanoparticles delay the onset of catheter-associated urinary tract infections

Show Author's information Yakov Shalom1Ilana Perelshtein2Nina Perkas2Aharon Gedanken2( )Ehud Banin1( )
The Mina and Everard Goodman Faculty of Life Sciences and Institute for Advanced Materials and Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
The Department of Chemistry and Institute for Advanced Materials and Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel

Abstract

Catheter-associated urinary tract infections (CAUTIs) are among the most common bacterial infections associated with medical devices. In the current study, the synthesis, coating, antibiofilm properties, and biocompatibility of urinary catheters coated with Zn-doped CuO (Zn0.12Cu0.88O) nanoparticles (NPs) were examined. The doped NPs were synthesized and subsequently deposited on the catheter by the sonochemical method. The coated catheters displayed high antibiofilm activity and promising biocompatibility, as indicated by low in vitro cytotoxicity, negligible associated cytokine secretion, and absence of detectable irritation. The biocompatibility and ability of the Zn-doped CuO coating to inhibit biofilm formation were also evaluated in vivo using a rabbit model. Rabbits catheterized with uncoated catheters scored positive for CAUTI by day 4 of the experiment. In contrast, rabbits catheterized with Zn-doped CuO-coated catheters did not exhibit CAUTI until day 7 or remained completely uninfected for the whole duration of the 7-day experiment. Furthermore, the in vivo biocompatibility assays and examinations supported the biosafety of Zn-doped CuO-coated catheters. Taken together, these data highlight the potential of Zn-doped CuO nanocomposite as effective antibiofilm compound.

Keywords: metal oxide, nanoparticle coating, antibiofilm, urinary tract infection, catheter

References(29)

1
Antibiotic Resistance Threats; U.S. Department of Health and Human Services: Washington, D.C., USA, 2013.
2

Yang, L.; Liu, Y.; Wu, H.; Song, Z. J.; Hoiby, N.; Molin, S.; Givskov, M. Combating biofilms. FEMS Immunol. Med. Microbiol. 2012, 65, 146-157.

3

Flemming, H. C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623-633.

4

Donlan, R. M.; Costerton, J. W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002, 15, 167-193.

5

Hall-Stoodley, L.; Costerton, J. W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95-108.

6

Costerton, J. W.; Stewart, P. S.; Greenberg, E. P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318-1322.

7

Trautner, B. W.; Darouiche, R. O. Role of biofilm in catheter-associated urinary tract infection. Am. J. Infect. Control 2004, 32, 177-183.

8

Stickler, D. J. Bacterial biofilms in patients with indwelling urinary catheters. Nat. Clin. Pract. Urol. 2008, 5, 598-608.

9

Schmiemann, G.; Kniehl, E.; Gebhardt, K.; Matejczyk, M. M.; Hummers-Pradier, E. The diagnosis of urinary tract infection: A systematic review. Deut. Arztebl. Int. 2010, 107, 361-367.

10

Darouiche, R. O. Treatment of infections associated with surgical implants. N. Engl. J. Med. 2004, 350, 1422-1429.

11

Guggenbichler, J. P.; Assadian, O.; Boeswald, M.; Kramer, A. Incidence and clinical implication of nosocomial infections associated with implantable biomaterials-catheters, ventilator-associated pneumonia, urinary tract infections. GMS Krankenhhyg. Interdiszip. 2011, 6, Doc18.

12

Gould, C. V.; Umscheid, C. A.; Agarwal, R. K.; Kuntz, G.; Pegues, D. A.; Healthcare Infection Control Practices Advisory Committee. Guideline for prevention of catheter-associated urinary tract infections 2009. Infect; Centers for Disease Control and Prevention: Washington D.C., USA, 2009.

13

Purvis, S.; Gion, T.; Kennedy, G.; Rees, S.; Safdar, N.; VanDenBergh, S.; Weber, J. Catheter-associated urinary tract infection: A successful prevention effort employing a multipronged initiative at an academic medical center. J. Nurs. Care Qual. 2014, 29, 141-148.

14

Meddings, J.; Rogers, M. A. M.; Macy, M.; Saint, S. Systematic review and meta-analysis: Reminder systems to reduce catheter-associated urinary tract infections and urinary catheter use in hospitalized patients. Clin. Infect. Dis. 2010, 51, 550-560.

15

Malka, E.; Perelshtein, I.; Lipovsky, A.; Shalom, Y.; Naparstek, L.; Perkas, N.; Patick, T.; Lubart, R.; Nitzan, Y.; Banin, E. et al. Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small 2013, 9, 4069-4076.

16

Alekshun, M. N.; Levy, S. B. Molecular mechanisms of antibacterial multidrug resistance. Cell 2007, 128, 1037-1050.

17

Andersen, J. L.; He, G. X.; Kakarla, P.; KC, R.; Kumar, S.; Lakra, W. S.; Mukherjee, M. M.; Ranaweera, I.; Shrestha, U.; Tran, T. et al. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int. J. Environ. Res. Public Health 2015, 12, 1487-1547.

18

Magiorakos, A. P.; Srinivasan, A.; Carey, R. B.; Carmeli, Y.; Falagas, M. E.; Giske, C. G.; Harbarth, S.; Hindler, J. F.; Kahlmeter, G.; Olsson-Liljequist, B. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268-281.

19

Palza, H. Antimicrobial polymers with metal nanoparticles. Int. J. Mol. Sci. 2015, 16, 2099-2116.

20

Perelshtein, I.; Lipovsky, A.; Perkas, N.; Tzanov, T.; Arguirova, M.; Leseva, M.; Gedanken, A. Making the hospital a safer place by sonochemical coating of all its textiles with antibacterial nanoparticles. Ultrason. Sonochem. 2015, 25, 82-88.

21

Perelshtein, I.; Applerot, G.; Perkas, N.; Wehrschuetz-Sigl, E.; Hasmann, A.; Guebitz, G.; Gedanken, A. CuO-cotton nanocomposite: Formation, morphology, and antibacterial activity. Surf. Coat. Technol. 2009, 204, 54-57.

22

Uthamanthil, R. K.; Hachem, R. Y.; Gagea, M.; Reitzel, R. A.; Borne, A. T.; Tinkey, P. T. Urinary catheterization of male rabbits: A new technique and a review of urogenital anatomy. J. Am. Assoc. Lab. Anim. Sci. 2013, 52, 180-185.

23

Zak, O.; Sande, M. A. Handbook of Animal Models of Infection: Experimental Models in Antimicrobial Chemotherapy; San Diego: Academic Press, 1999.

DOI
24

Eshed, M.; Lellouche, J.; Gedanken, A.; Banin, E. A Zn-doped CuO nanocomposite shows enhanced antibiofilm and antibacterial activities against Streptococcus mutans compared to nanosized CuO. Adv. Funct. Mater. 2014, 24, 1382-1390.

25

Wu, J.; Wang, L. Y.; He, J.; Zhu, C. H. In vitro cytotoxicity of Cu2+, Zn2+, Ag+ and their mixtures on primary human endometrial epithelial cells. Contraception 2012, 85, 509-518.

26

Paasche, G.; Ceschi, P.; Löbler, M.; Rösl, C.; Gomes, P.; Hahn, A.; Rohm, H. W.; Sternberg, K.; Lenarz, T.; Schmitz, K. P. et al. Effects of metal ions on fibroblasts and spiral ganglion cells. J. Neurosci. Res. 2011, 89, 611-617.

27

Perelshtein, I.; Ruderman, Y.; Perkas, N.; Beddow, J.; Singh, G.; Vinatoru, M.; Joyce, E.; Mason, T. J.; Blanes, M.; Mollá, K. et al. The sonochemical coating of cotton withstands 65 washing cycles at hospital washing standards and retains its antibacterial properties. Cellulose 2013, 20, 1215-1221.

28

Perelshtein, I.; Lipovsky, A.; Perkas, N.; Gedanken, A.; Moschini, E.; Mantecca, P. The influence of the crystalline nature of nano-metal oxides on their antibacterial and toxicity properties. Nano Res. 2015, 8, 695-707.

29

Pickard, R.; Lam, T.; MacLennan, G.; Starr, K.; Kilonzo, M.; McPherson, G.; Gillies, K.; McDonald, A.; Walton, K.; Buckley, B. et al. Antimicrobial catheters for reduction of symptomatic urinary tract infection in adults requiring short-term catheterisation in hospital: A multicentre randomised controlled trial. Lancet 2012, 380, 1927-1935.

File
nr-10-2-520_ESM.pdf (687.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 July 2016
Revised: 26 September 2016
Accepted: 04 October 2016
Published: 13 December 2016
Issue date: February 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This project was partially funded by a Kamin research grant from the Israeli Ministry of Economy to Ehud Banin. We also thank the Dyna and Fala Weinstock Foundation and the Douer Family Foundation for their support. We are grateful to Dr. Gal Yerushalmi and Yana Belnik for fruitful discussions and assistance in the preparation of the manuscript. We thank Yossi Lavie from Harlan for technical assistance and Dr. Abraham Nyska for histopathological analysis. We thank Katya Gotlib for technical assistance in the HRSEM.

Return