Journal Home > Volume 10 , Issue 2

Rashba spin splitting (RSS) in quantum-spin Hall (QSH) insulators is of special importance for fabricating spintronic devices. By changing the stacking order, a unique bilayered fluorinated arsenene (AsF) system is demonstrated to simultaneously possess RSS and non-trivial topological electronic states. We show by first-principle calculations that tunable RSS can be realized in bilayered AsF. Intrinsic RSS of 25 meV is obtained in the AA-stacked AsF bilayer by considering the spin-orbit coupling effect. The RSS can be tuned in the range of 0 to 50 meV by applying biaxial strains and can be significantly enhanced up to 186 meV in the presence of an external electric field. The AB-stacked AsF bilayer is shown to be a two-dimensional topological insulator with a sizable bulk bandgap of 140 meV (up to 240 meV), which originates from the spin-orbit coupling within the px, y–pz band inversion. Surprisingly, RSS up to 295 meV can be induced in the AB-stacked AsF bilayer by applying an external electric field, while the robust topology property without RSS can be retained under the applied strains. The AsF bilayers with tunable RSS and a nontrivial bandgap with AA- and AB-stacking orders can pave the way for designing spin field-effect transistors and new QSH devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tunable Rashba spin splitting in quantum-spin Hall-insulator AsF bilayers

Show Author's information Jun Zhao1,3Wanlin Guo2Jing Ma1( )
School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing 210093, China
State Key Laboratory of Mechanics and Control of Mechanical Structures, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China

Abstract

Rashba spin splitting (RSS) in quantum-spin Hall (QSH) insulators is of special importance for fabricating spintronic devices. By changing the stacking order, a unique bilayered fluorinated arsenene (AsF) system is demonstrated to simultaneously possess RSS and non-trivial topological electronic states. We show by first-principle calculations that tunable RSS can be realized in bilayered AsF. Intrinsic RSS of 25 meV is obtained in the AA-stacked AsF bilayer by considering the spin-orbit coupling effect. The RSS can be tuned in the range of 0 to 50 meV by applying biaxial strains and can be significantly enhanced up to 186 meV in the presence of an external electric field. The AB-stacked AsF bilayer is shown to be a two-dimensional topological insulator with a sizable bulk bandgap of 140 meV (up to 240 meV), which originates from the spin-orbit coupling within the px, y–pz band inversion. Surprisingly, RSS up to 295 meV can be induced in the AB-stacked AsF bilayer by applying an external electric field, while the robust topology property without RSS can be retained under the applied strains. The AsF bilayers with tunable RSS and a nontrivial bandgap with AA- and AB-stacking orders can pave the way for designing spin field-effect transistors and new QSH devices.

Keywords: electric field, topological insulator, Rashba spin splitting, bilayer AsF, tensile strain

References(59)

1

Datta, S.; Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 1990, 56, 665-667.

2

Gambardella, P.; Miron, I. M. Current-induced spin-orbit torques. Phil. Trans. Roy. Soc. A 2011, 369, 3175-3197.

3

Rashba, E. I. Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 1960, 2, 1109-1122.

4

Bychkov, Y. A.; Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C: Solid State Phys. 1984, 17, 6039-6045.

5

Awschalom, D.; Samarth, N. Trend: Spintronics without magnetism. Physics 2009, 2, 50.

6

Bychkov, Y. A.; Rashba, É. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 1984, 39, 78-81.

7

Nitta, J.; Akazaki, T.; Takayanagi, H.; Enoki, T. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/ In0.52Al0.48As heterostructure. Phys. Rev. Lett. 1997, 78, 1335-1338.

8

Tahan, C.; Joynt, R. Rashba spin-orbit coupling and spin relaxation in silicon quantum wells. Phys. Rev. B 2005, 71, 075315.

9

LaShell, S.; McDougall, B. A.; Jensen, E. Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy. Phys. Rev. Lett. 1996, 77, 3419-3422.

10

Popović, D.; Reinert, F.; Hüfner, S.; Grigoryan, V. G.; Springborg, M.; Cercellier, H.; Fagot-Revurat, Y.; Kierren, B.; Malterre, D. High-resolution photoemission on Ag/Au (111): Spin-orbit splitting and electronic localization of the surface state. Phys. Rev. B 2005, 72, 045419.

11

Varykhalov, A.; Marchenko, D.; Scholz, M. R.; Rienks, E. D. L.; Kim, T. K.; Bihlmayer, G.; Sánchez-Barriga, J.; Rader, O. Ir(111) surface state with giant Rashba splitting persists under graphene in air. Phys. Rev. Lett. 2012, 108, 066804.

12

Koroteev, Y. M.; Bihlmayer, G.; Gayone, J. E.; Chulkov, E. V.; Blügel, S.; Echenique, P. M.; Hofmann, P. Strong spin-orbit splitting on Bi surfaces. Phys. Rev. Lett. 2004, 93, 046403.

13

Sugawara, K.; Sato, T.; Souma, S.; Takahashi, T.; Arai, M.; Sasaki, T. Fermi surface and anisotropic spin-orbit coupling of Sb (111) studied by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 2006, 96, 046411.

14

Ast, C. R.; Henk, J.; Ernst, A.; Moreschini, L.; Falub, M. C.; Pacilé, D.; Bruno, P.; Kern, K.; Grioni, M. Giant spin splitting through surface alloying. Phys. Rev. Lett. 2007, 98, 186807.

15

Gierz, I.; Suzuki, T.; Frantzeskakis, E.; Pons, S.; Ostanin, S.; Ernst, A.; Henk, J.; Grioni, M.; Kern, K.; Ast, C. R. Silicon surface with giant spin splitting. Phys. Rev. Lett. 2009, 103, 046803.

16

Mathias, S.; Ruffing, A.; Deicke, F.; Wiesenmayer, M.; Sakar, I.; Bihlmayer, G.; Chulkov, E. V.; Koroteev, Y. M.; Echenique, P. M.; Bauer, M. et al. Quantum-well-induced giant spin-orbit splitting. Phys. Rev. Lett. 2010, 104, 066802.

17

Park, J.; Jung, S. W.; Jung, M. C.; Yamane, H.; Kosugi, N.; Yeom, H. W. Self-assembled nanowires with giant Rashba split bands. Phys. Rev. Lett. 2013, 110, 036801.

18

Dedkov, Y. S.; Fonin, M.; Rüdiger, U.; Laubschat, C. Rashba effect in the graphene/Ni (111) system. Phys. Rev. Lett. 2008, 100, 107602.

19

Ishizaka, K.; Bahramy, M. S.; Murakawa, H.; Sakano, M.; Shimojima, T.; Sonobe, T.; Koizumi, K.; Shin, S.; Miyahara, H.; Kimura, A. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 2011, 10, 521-526.

20

King, P. D. C.; Hatch, R. C.; Bianchi, M.; Ovsyannikov, R.; Lupulescu, C.; Landolt, G.; Slomski, B.; Dil, J. H.; Guan, D.; Mi, J. L. et al. Large tunable Rashba spin splitting of a two-dimensional electron gas in Bi2Se3. Phys. Rev. Lett. 2011, 107, 096802.

21

Zhu, Z. H.; Levy, G.; Ludbrook, B.; Veenstra, C. N.; Rosen, J. A.; Comin, R.; Wong, D.; Dosanjh, P.; Ubaldini, A.; Syers, P. et al. Rashba spin-splitting control at the surface of the topological insulator Bi2Se3. Phys. Rev. Lett. 2011, 107, 186405.

22

Wang, E. Y.; Tang, P. Z.; Wan, G. L.; Fedorov, A. V.; Miotkowski, I.; Chen, Y. P.; Duan, W. H.; Zhou, S. Y. Robust gapless surface state and Rashba-splitting bands upon surface deposition of magnetic Cr on Bi2Se3. Nano Lett. 2015, 15, 2031-2036.

23

Di Sante, D.; Barone, P.; Bertacco, R.; Picozzi, S. Electric control of the giant Rashba effect in Bulk GeTe. Adv. Mater. 2013, 25, 509-513.

24

Zhuang, H. L.; Cooper, V. R.; Xu, H. X.; Ganesh, P.; Hennig, R. G.; Kent, P. R. C. Rashba effect in single-layer antimony telluroiodide SbTeI. Phys. Rev. B 2015, 92, 115302.

25

Kepenekian, M.; Robles, R.; Katan, C.; Sapori, D.; Pedesseau, L.; Even, J. Rashba and Dresselhaus effects in hybrid organic-inorganic perovskites: From basics to devices. ACS Nano 2015, 9, 11557-11567.

26

Ming, W. M.; Wang, Z. F.; Zhou, M.; Yoon, M.; Liu, F. Formation of ideal Rashba states on layered semiconductor surfaces steered by strain engineering. Nano Lett. 2016, 16, 404-409.

27

Liu, Q. H.; Zhang, X. W.; Abdalla, L. B.; Zunger, A. Transforming common Ⅲ-Ⅴ and Ⅱ-Ⅵ semiconductor compounds into topological heterostructures: The case of CdTe/InSb superlattices. Adv. Funct. Mater. 2016, 26, 3259-3267.

28

Zhang, S. L.; Yan, Z.; Li, Y. F.; Chen, Z. F.; Zeng, H. B. Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chem., Int. Ed. 2015, 54, 3112-3115.

29

Kamal, C.; Ezawa, M. Arsenene: Two-dimensional buckled and puckered honeycomb arsenene systems. Phys. Rev. B 2015, 91, 085423.

30

Kou, L. Z.; Ma, Y. D.; Tan, X.; Frauenheim, T.; Du, A. J.; Smith, S. Structural and electronic properties of layered arsenic and antimony arsenide. J. Phys. Chem. C 2015, 119, 6918-6922.

31

Zhang, S. L.; Hu, Y. H.; Hu, Z. Y.; Cai, B.; Zeng, H. B. Hydrogenated arsenenes as planar magnet and Dirac material. Appl. Phys. Lett. 2015, 107, 022102.

32

Cao, H. W.; Yu, Z. Y.; Lu, P. F. Electronic properties of monolayer and bilayer arsenene under in-plain biaxial strains. Superlatt. Microst. 2015, 86, 501-507.

33

Zhang, Z. Z.; Xie, J. F.; Yang, D. Z.; Wang, Y. H.; Si, M. S.; Xue, D. S. Manifestation of unexpected semiconducting properties in few-layer orthorhombic arsenene. Appl. Phys. Express 2015, 8, 055201.

34

Tang, W. C.; Sun, M. L.; Ren, Q. Q.; Wang, S.; Yu, J. Halogenated arsenenes as Dirac materials. Appl. Surf. Sci. 2016, 376, 286-289.

35

Du, J.; Xia, C. X.; Wang, T. X.; Zhao, X.; Tan, X. M.; Wei, S. Y. First-principles studies on substitutional doping by group Ⅳ and Ⅵ atoms in the two-dimensional arsenene. Appl. Surf. Sci. 2016, 378, 350-356.

36

Li, Z. J.; Xu, W.; Yu, Y. Q.; Du, H. Y.; Zhen, K.; Wang, J.; Luo, L. B.; Qiu, H. L.; Yang, X. B. Monolayer hexagonal arsenene with tunable electronic structures and magnetic properties via impurity doping. J. Mater. Chem. C 2016, 4, 362-370.

37

Zhang, H. J.; Ma, Y. D.; Chen, Z. F. Quantum spin Hall insulators in strain-modified arsenene. Nanoscale 2015, 7, 19152-19159.

38

Wang, Y. P.; Zhang, C. W.; Ji, W. X.; Zhang, R. W.; Li, P.; Wang, P. J.; Ren, M. J.; Chen, X. L.; Yuan, M. Tunable quantum spin Hall effect via strain in two-dimensional arsenene monolayer. J. Phys. D: Appl. Phys. 2016, 49, 055305.

39

Wang, Y. P.; Ji, W. X.; Zhang, C. W.; Li, P.; Li, F.; Ren, M. J.; Chen, X. L.; Yuan, M.; Wang, P. J. Controllable band structure and topological phase transition in two-dimensional hydrogenated arsenene. Sci. Rep. 2016, 6, 20342.

40

Song, Z. G.; Liu, C. C.; Yang, J. B.; Han, J. Z.; Ye, M.; Fu, B. T.; Yang, Y. C.; Niu, Q.; Lu, J.; Yao, Y. G. Quantum spin Hall insulators and quantum valley hall insulators of BiX/SbX (X = H, F, Cl and Br) monolayers with a record bulk band gap. NPG Asia Mater. 2014, 6, e147.

41

Wang, D. C.; Chen, L.; Shi, C. M.; Wang, X. L.; Cui, G. L.; Zhang, P. H.; Chen, Y. Q. Robust large-gap quantum spin Hall insulators in chemically decorated arsenene films. New J. Phys. 2016, 18, 033026.

42

Zhao, J.; Li, Y. L.; Ma, J. Quantum spin Hall insulators in functionalized arsenene (AsX, X = F, OH and CH3) monolayers with pronounced light absorption. Nanoscale 2016, 8, 9657-9666.

43

Tsai, H. S.; Wang, S. W.; Hsiao, C. H.; Chen, C. W.; Ouyang, H.; Chueh, Y. L.; Kuo, H. C.; Liang, J. H. Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons. Chem. Mater. 2016, 28, 425-429.

44

Kane, C. L.; Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 2005, 95, 146802.

45

Bahramy, M. S.; Yang, B. J.; Arita, R.; Nagaosa, N. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nat. Commun. 2012, 3, 679.

46

Liu, Y. P.; Goolaup, S.; Murapaka, C.; Lew, W. S.; Wong, S. K. Effect of magnetic field on the electronic transport in trilayer graphene. ACS Nano 2010, 4, 7087-7092.

47

Zhu, W. J.; Perebeinos, V.; Freitag, M.; Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 2009, 80, 235402.

48

Mak, K. F.; Shan, J.; Heinz, T. F. Electronic structure of few-layer graphene: Experimental demonstration of strong dependence on stacking sequence. Phys. Rev. Lett. 2010, 104, 176404.

49

Bao, W.; Jing, L.; Velasco, J., Jr.; Lee, Y.; Liu, G.; Tran, D.; Standley, B.; Aykol, M.; Cronin, S. B.; Smirnov, D. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nat. Phys. 2011, 7, 948-952.

50

Fu, L.; Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 2007, 76, 045302.

51

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 2003, 118, 8207-8215.

52

Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

53

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

54

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

55

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

56

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.

57

Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.

58

Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515-562.

59

Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. : Condens. Matter 2002, 14, 2717-2744.

File
nr-10-2-491_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 July 2016
Revised: 26 September 2016
Accepted: 04 October 2016
Published: 10 November 2016
Issue date: February 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21273102, 51535005, 21290192, 21673111, 11304022 and 11404037) and National Basic Research Program of China (No. 2013CB932604). We are grateful to the High Performance Computing Centre of Nanjing University for providing the Blade cluster system.

Return