Journal Home > Volume 10 , Issue 2

Lithium-air batteries have attracted significant interest for applications in high energy density mobile power supplies, yet there are considerable challenges to the development of rechargeable Li-air batteries with stable cycling performance under ambient conditions. Here we report a three-dimensional (3D) hydrophobic graphene membrane as a moisture-resistive cathode for high performance Li-air batteries. The 3D graphene membrane features a highly interconnected graphene network for efficient charge transport, a highly porous structure for efficient diffusion of oxygen and electrolyte ions, a large specific surface area for high capacity storage of the insulating discharge product, and a network of highly tortuous hydrophobic channels for O2/H2O selectivity. These channels facilitate O2 ingression while retarding moisture diffusion and ensure excellent charge/ discharge cycling stability under ambient conditions. The membrane can thus enable robust Li-air batteries with exceptional performance, including a maximum cathode capacity that exceeds 5, 700 mAh/g and excellent recharge cycling behavior (> 2, 000 cycles at 140 mAh/g, and > 100 cycles at 1, 400 mAh/g). The graphene membrane air cathode can deliver a lifetime capacity of 100, 000–300, 000 mAh/g, comparable to that of a typical lithium ion battery cathode. The stable operation of Li-air batteries with significantly improved single charge capacities and lifetime capacities comparable to those of Li-ion batteries may offer an attractive high energy density storage alternative for future mobile power supplies. These batteries may provide much longer battery lives and greatly reduced recharge frequency.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions

Show Author's information Xing Zhong1,§Benjamin Papandrea1,§Yuxi Xu1,§Zhaoyang Lin1Hua Zhang2Yuan Liu2Yu Huang3,2Xiangfeng Duan1,3( )
Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesLos AngelesCA90095USA
California Nanosystems InstituteUniversity of CaliforniaLos AngelesLos AngelesCA90095USA
Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesLos AngelesCA90095USA

§ These authors contributed equally to this work.

Abstract

Lithium-air batteries have attracted significant interest for applications in high energy density mobile power supplies, yet there are considerable challenges to the development of rechargeable Li-air batteries with stable cycling performance under ambient conditions. Here we report a three-dimensional (3D) hydrophobic graphene membrane as a moisture-resistive cathode for high performance Li-air batteries. The 3D graphene membrane features a highly interconnected graphene network for efficient charge transport, a highly porous structure for efficient diffusion of oxygen and electrolyte ions, a large specific surface area for high capacity storage of the insulating discharge product, and a network of highly tortuous hydrophobic channels for O2/H2O selectivity. These channels facilitate O2 ingression while retarding moisture diffusion and ensure excellent charge/ discharge cycling stability under ambient conditions. The membrane can thus enable robust Li-air batteries with exceptional performance, including a maximum cathode capacity that exceeds 5, 700 mAh/g and excellent recharge cycling behavior (> 2, 000 cycles at 140 mAh/g, and > 100 cycles at 1, 400 mAh/g). The graphene membrane air cathode can deliver a lifetime capacity of 100, 000–300, 000 mAh/g, comparable to that of a typical lithium ion battery cathode. The stable operation of Li-air batteries with significantly improved single charge capacities and lifetime capacities comparable to those of Li-ion batteries may offer an attractive high energy density storage alternative for future mobile power supplies. These batteries may provide much longer battery lives and greatly reduced recharge frequency.

Keywords: energy storage, graphene framework, three-dimensional (3D)-network, lithium air-battery, water resistive

References(63)

1

Lopez, N.; Graham, D. J.; McGuire, R., Jr.; Alliger, G. E.; Shao-Horn, Y.; Cummins, C. C.; Nocera, D. G. Reversible reduction of oxygen to peroxide facilitated by molecular recognition. Science 2012, 335, 450–453.

2

Crowther, O.; Meyer, B.; Morgan, M; Salomon, M. Primary Li-air cell development. J. Power Sources 2011, 196, 1498–1502.

3

Zhang, H.; Zhong, X.; Shaw, J. C.; Liu, L. X.; Huang, Y.; Duan, X. F. Very high energy density silicide–air primary batteries. Energy Environ. Sci. 2013, 6, 2621–2625.

4

Li, F. J.; Kitaura, H; Zhou, H. S. The pursuit of rechargeable solid-state Li-air batteries. Energy Environ. Sci. 2013, 6, 2302–2311.

5

Débart, A.; Paterson, A. J.; Bao, J. L.; Bruce, P. G. alpha- MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. , Int. Ed. 2008, 47, 4521–4524.

6

Zhang, S. S.; Read, J. Partially fluorinated solvent as a co-solvent for the non-aqueous electrolyte of Li/air battery. J. Power Sources 2011, 196, 2867–2870.

7

Lu, Y. C.; Gasteiger, H. A.; Parent, M. C.; Chiloyan, V; Shao-Horn, Y. The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. Electrochem. Solid-State Lett. 2010, 13, A69–A72.

8

Zhong, X.; Zhang, H.; Liu, Y.; Bai, J. W.; Liao, L.; Huang, Y.; Duan, X. F. High-capacity silicon–air battery in alkaline solution. ChemSusChem 2012, 5, 177–180.

9

Jung, H. G.; Hassoun, J.; Park, J. B.; Sun, Y. K.; Scrosati, B. An improved high-performance lithium–air battery. Nat. Chem. 2012, 4, 579–585.

10

Freunberger, S. A.; Chen, Y. H.; Drewett, N. E.; Hardwick, L. J.; Bardé, F.; Bruce, P. G. The lithium-oxygen battery with ether-based electrolytes. Angew. Chem. , Int. Ed. 2011, 50, 8609–8613.

11

Walker, W.; Giordani, V.; Uddin, J.; Bryantsev, V. S.; Chase, G. V.; Addison, D. A rechargeable Li-O2 battery using a lithium nitrate/N, N-dimethylacetamide electrolyte. J. Am. Chem. Soc. 2013, 135, 2076–2079.

12

McCloskey, B. D.; Scheffler, R.; Speidel, A.; Bethune, D. S.; Shelby, R. M.; Luntz, A. C. On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. J. Am. Chem. Soc. 2011, 133, 18038–18041.

13

Xiao, J.; Wang, D. H.; Xu, W.; Wang, D. Y.; Williford, R. E.; Liu, J.; Zhang, J. G. Optimization of air electrode for Li/air batteries. J. Electrochem. Soc. 2010, 157, A487–A492.

14

Li, Y. L.; Wang, J. J.; Li, X. F.; Geng, D. S.; Li, R. Y.; Sun, X. L. Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chem. Commun. 2011, 47, 9438–9440.

15

Younesi, S. R.; Urbonaite, S.; Björefors, F.; Edström, K. Influence of the cathode porosity on the discharge performance of the lithium–oxygen battery. J. Power Sources 2011, 196, 9835–9838.

16

Mitchell, R. R.; Gallant, B. M.; Thompson, C. V.; Shao- Horn, Y. All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries. Energy Environ. Sci. 2011, 4, 2952–2958.

17

Lu, Y. C.; Gasteiger, H. A.; Shao-Horn, Y. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. J. Am. Chem. Soc. 2011, 133, 19048–19051.

18

Zhang, T.; Zhou, H. S. From Li–O2 to Li–air batteries: Carbon nanotubes/ionic liquid gels with a tricontinuous passage of electrons, ions, and oxygen. Angew. Chem. 2012, 124, 11224–11229.

19

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Zheng, G. Y.; Li, Y. G.; Cui, Y.; Dai, H. J. Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4 –graphene hybrid as an oxygen cathode catalyst. Energy Environ. Sci. 2012, 5, 7931–7935.

20

Oh, S. H.; Black, R.; Pomerantseva, E.; Lee, J. -H.; Nazar, L. F. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium–O2 batteries. Nat. Chem. 2012, 4, 1004–1010.

21

Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 2011, 3, 546–550.

22

Xu, J. J.; Wang, Z. L.; Xu, D.; Zhang, L. L.; Zhang, X. B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 2013, 4, 2438.

23

Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203.

24

Chen, L. Y.; Guo, X. W.; Han, J. H.; Liu, P.; Xu, X. D.; Hirata, A.; Chen, M. W. Nanoporous metal/oxide hybrid materials for rechargeable lithium–oxygen batteries. J. Mater. Chem. A 2015, 3, 3620–3626.

25

Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 2012, 337, 563–566.

26

Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Chen, Y. H.; Liu, Z.; Bruce, P. G. A stable cathode for the aprotic Li–O2 battery. Nat. Mater. 2013, 12, 1050–1056.

27

Li, Y. F.; Huang, Z. P.; Huang, K.; Carnahan, D.; Xing, Y. C. Hybrid Li-air battery cathodes with sparse carbon nanotube arrays directly grown on carbon fiber papers. Energy Environ. Sci. 2013, 6, 3339–3345.

28

Crowther, O.; Salomon, M. Oxygen selective membranes for Li-air (O2) batteries. Membranes 2012, 2, 216–227.

29

Crowther, O.; Keeny, D.; Moureau, D. M.; Meyer, B.; Salomon, M.; Hendrickson, M. Electrolyte optimization for the primary lithium metal air battery using an oxygen selective membrane. J. Power Sources 2012, 202, 347–351.

30

Zhang, J.; Xu, W.; Li, X. H.; Liu, W. Air dehydration membranes for nonaqueous lithium-air batteries. J. Electrochem. Soc. 2010, 157, A940–A946.

31

Huang, S. T.; Cui, Z. H.; Zhao, N.; Sun, J. Y.; Guo, X. X. Influence of ambient air on cell reactions of Li-air batteries. Electrochim. Acta 2016, 191, 473–478.

32

Sahapatsombut, U.; Cheng, H.; Scott, K. Modelling of operation of a lithium-air battery with ambient air and oxygen-selective membrane. J. Power Sources 2014, 249, 418–430.

33

Zhang, T.; Zhou, H. S. A reversible long-life lithium–air battery in ambient air. Nat. Commun. 2013, 4, 1817.

34

Lim, H. K.; Lim, H. D.; Park, K. Y.; Seo, D. H.; Gwon, H.; Hong, J.; Goddard, W. A.; Kim, H.; Kang, K. Toward a lithium-"air" battery: The effect of CO2 on the chemistry of a lithium-oxygen cell. J. Am. Chem. Soc. 2013, 135, 9733–9742.

35

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

36

Bai, J. W.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. F. Graphene nanomesh. Nat. Nanotechnol. 2010, 5, 190–194.

37

Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

38

Hummers, W. S., Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1340.

39

He, M.; Zhang, P.; Liu, L.; Liu, B.; Xu, S. Hierarchical porous nitrogen doped three-dimensional graphene as a free- standing cathode for rechargeable lithium-oxygen batteries. Electrochim. Acta 2016, 191, 90–97.

40

Ren, L.; Hui, K. N.; Hui, K. S.; Liu, Y. D.; Qi, X.; Zhong, J. X.; Du, Y.; Yang, J. P. 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage. Sci. Rep. 2015, 5, 14229.

41

Zhang, J. K.; Li, P. F.; Wang, Z. H.; Qiao, J. S.; Rooney, D.; Sun, W.; Sun, K. N. Three-dimensional graphene–Co3O4 cathodes for rechargeable Li–O2 batteries. J. Mater. Chem. A 2015, 3, 1504–1510.

42

Zhao, C. T.; Yu, C.; Liu, S. H.; Yang, J.; Fan, X. M.; Huang, H. W.; Qiu, J. S. 3D porous N-doped graphene frameworks made of interconnected nanocages for ultrahigh-rate and long-life Li–O2 batteries. Adv. Funct. Mater. 2015, 25, 6913–6920.

43

Kim, D. Y.; Kim, M.; Kim, D. W.; Suk, J.; Park, O. O.; Kang, Y. Flexible binder-free graphene paper cathodes for high-performance Li-O2 batteries. Carbon 2015, 93, 625–635.

44

Guo, X. W.; Liu, P.; Han, J. H.; Ito, Y.; Hirata, A.; Fujita, T.; Chen, M. W. 3D nanoporous nitrogen-doped graphene with encapsulated RuO2 nanoparticles for Li–O2 batteries. Adv. Mater. 2015, 27, 6137–6143.

45

Zhou, W.; Zhang, H. Z.; Nie, H. J.; Ma, Y. W.; Zhang, Y. N.; Zhang, H. M. Hierarchical micron-sized mesoporous/ macroporous graphene with well-tuned surface oxygen chemistry for high capacity and cycling stability Li–O2 battery. ACS Appl. Mater. Interfaces 2015, 7, 3389–3397.

46

Kim, D. Y.; Kim, M.; Kim, D. W.; Suk, J.; Park, J. J.; Park, O. O.; Kang, Y. K. Graphene paper with controlled pore structure for high-performance cathodes in Li–O2 batteries. Carbon 2016, 100, 265–272.

47

Storm, M. M.; Overgaard, M.; Younesi, R.; Reeler, N. E. A.; Vosch, T.; Nielsen, U. G.; Edström, K.; Norby, P. Reduced graphene oxide for Li–air batteries: The effect of oxidation time and reduction conditions for graphene oxide. Carbon 2015, 85, 233–244.

48

Yoo, E.; Nakamura, J.; Zhou, H. S. N-doped graphene nanosheets for Li-air fuel cells under acidic conditions. Energy Environ. Sci. 2012, 5, 6928–6932.

49

Xiao, J.; Mei, D. H.; Li, X. L.; Xu, W.; Wang, D. Y.; Graff, G. L.; Bennett, W. D.; Nie, Z. M.; Saraf, L. V.; Aksay, I. A. et al. Hierarchically porous graphene as a lithium–air battery electrode. Nano Lett. 2011, 11, 5071–5078.

50

Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, L. L.; Zhang, X. B. Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries. Adv. Funct. Mater. 2012, 22, 3699–3705.

51

Yoo, E.; Zhou, H. S. Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano 2011, 5, 3020–3026.

52

Lu, Y. C.; Gallant, B. M.; Kwabi, D. G.; Harding, J. R.; Mitchell, R. R.; Whittinghamd, M. S.; Yang, S. H. Lithium- oxygen batteries: Bridging mechanistic understanding and battery performance. Energy Environ. Sci. 2013, 6, 750–768.

53

Black, R.; Oh, S. H.; Lee, J. H.; Yim, T.; Adams, B.; Nazar, L. F. Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc. 2012, 134, 2902–2905.

54

Younesi, R.; Hahlin, M.; Treskow, M.; Scheers, J.; Johansson, P.; Edström, K. Ether based electrolyte, LiB(CN)4 salt and binder degradation in the Li-O2 battery studied by hard X-ray photoelectron spectroscopy (HAXPES) J. Phys. Chem. C 2012, 116, 18597–18604.

55

Younesi, R.; Hahlin, M.; Björefors, F.; Johansson, P.; Edström, K. Li-O2 battery degradation by lithium peroxide (Li2O2): A model study. Chem. Mater. 2013, 25, 77–84.

56

Meini, S.; Tsiouvaras, N.; Schwenke, K. U.; Piana, M.; Beyer, H.; Lange, L.; Gasteiger, H. A. Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: Implications for cycle-life of Li-air cells. Phys. Chem. Chem. Phys. 2013, 15, 11478– 11493.

57

Burggraaf, A. J. Single gas permeation of thin zeolite (MFI) membranes: Theory and analysis of experimental observations. J. Memb. Sci. 1999, 155, 45–65.

58

Yang, D. S.; Zewail, A. H. Ordered water structure at hydrophobic graphite interfaces observed by 4D, ultrafast electron crystallography. Proc. Natl. Acad. Sci. USA 2009, 106, 4122–4126.

59

Zheng, Y.; Su, C. L.; Lu, J.; Loh, K. P. Room-temperature ice growth on graphite seeded by nano-graphene oxide. Angew. Chem., Int. Ed. 2013, 52, 8708–8712.

60

Wernet, P.; Nordlund, D.; Bergmann, U.; Cavalleri, M.; Odelius, M.; Ogasawara, H.; Näslund, L. Å.; Hirsch, T. K.; Ojamäe, L.; Glatzel, P. et al. The structure of the first coordination shell in liquid water. Science 2004, 304, 995–999.

61

Leenaerts, O.; Partoens, B.; Peeters, F. M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B 2008, 77, 125416.

62

Mehmood, F.; Pachter, R.; Lu, W. J.; Boeckl, J. J. Adsorption and diffusion of oxygen on single-layer graphene with topological defects. J. Phys. Chem. C 2013, 117, 10366–10374.

63

Yan, H. J.; Xu, B.; Shi, S. Q.; Ouyang, C. Y. First-principles study of the oxygen adsorption and dissociation on graphene and nitrogen doped graphene for Li-air batteries. J. Appl. Phys. 2012, 112, 104316.

File
nr-10-2-472_ESM.pdf (526.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 May 2016
Revised: 27 September 2016
Accepted: 04 October 2016
Published: 19 November 2016
Issue date: February 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

We acknowledge the support from the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering through Award DE-SC0008055. We acknowledge Electron Imaging Center for Nanomachines (EICN) at UCLA for the support of TEM, supported with funding from NIH- NCRR shared resources Grant (No. CJX1-443835- WS-29646) and NSF Major Research Instrumentation Grant (No. CHE-0722519).

Return