Journal Home > Volume 10 , Issue 2

Controlling the properties of piezoelectric thin films is a key aspect for designing highly efficient flexible electromechanical devices. In this study, the crystallographic phenomena of PbZr1–xTixO3 (PZT) thin films caused by distinguished interfacial effects are deeply investigated by overlooking views, including not only an experimental demonstration but also ab initio modeling. The polymorphic phase balance and crystallinity, as well as the crystal orientation of PZT thin films at the morphotropic phase boundary (MPB), can be stably modulated using interfacial crystal structures. Here, interactions with MgO stabilize the PZT crystallographic system well and induce the texturing influences, while the PZT film remains quasi-stable on a conventional Al2O3 wafer. On the basis of this fundamental understanding, a high-output flexible energy harvester is developed using the controlled-PZT system, which shows significantly higher performance than the unmodified PZT generator. The voltage, current, and power densities are improved by 556%, 503%, and 822%, respectively, in comparison with the previous flexional single-crystalline piezoelectric device. Finally, the improved flexible generator is applied to harvest tiny vibrational energy from a real traffic system, and it is used to operate a commercial electronic unit. These results clearly indicate that atomic-scale designs can produce significant impacts on macroscopic applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film

Show Author's information Chang Kyu Jeong1,2,,,, ,§Sung Beom Cho3,§Jae Hyun Han1Dae Yong Park1Suyoung Yang4Kwi-Il Park5Jungho Ryu6Hoon Sohn4( )Yong-Chae Chung3( )Keon Jae Lee1( )
Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak-roYuseong-guDaejeon34141Republic of Korea
KAIST Institute for the NanoCentury (KINC)291 Daehak-roYuseong-guDaejeon34141Republic of Korea
Division of Materials Science and EngineeringHanyang University222 Wangsimni-roSeongdong-guSeoul04763Republic of Korea
Department of Civil and Environmental EngineeringKAIST291 Daehak-roYuseong-guDaejeon34141Republic of Korea
Department of Energy EngineeringGyeongnam National University of Science and Technology33 Dongjin-roJinjuGyeongnam52725Republic of Korea
Functional Ceramic GroupKorea Institute of Materials Science (KIMS)797 Changwon-daeroSeongsan-guChangwonGyeongnam51508Republic of Korea

Present address: Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA § These authors contributed equally to this work.

Abstract

Controlling the properties of piezoelectric thin films is a key aspect for designing highly efficient flexible electromechanical devices. In this study, the crystallographic phenomena of PbZr1–xTixO3 (PZT) thin films caused by distinguished interfacial effects are deeply investigated by overlooking views, including not only an experimental demonstration but also ab initio modeling. The polymorphic phase balance and crystallinity, as well as the crystal orientation of PZT thin films at the morphotropic phase boundary (MPB), can be stably modulated using interfacial crystal structures. Here, interactions with MgO stabilize the PZT crystallographic system well and induce the texturing influences, while the PZT film remains quasi-stable on a conventional Al2O3 wafer. On the basis of this fundamental understanding, a high-output flexible energy harvester is developed using the controlled-PZT system, which shows significantly higher performance than the unmodified PZT generator. The voltage, current, and power densities are improved by 556%, 503%, and 822%, respectively, in comparison with the previous flexional single-crystalline piezoelectric device. Finally, the improved flexible generator is applied to harvest tiny vibrational energy from a real traffic system, and it is used to operate a commercial electronic unit. These results clearly indicate that atomic-scale designs can produce significant impacts on macroscopic applications.

Keywords: energy harvesting, piezoelectric, first-principles calculation, morphotropic phase boundary (MPB), lead zirconium titanate (PZT)

References(65)

1

Hinchet, R.; Kim, S. W. Wearable and implantable mechanical energy harvesters for self-powered biomedical systems. ACS Nano 2015, 9, 7742–7745.

2

Wang, X. D. Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale. Nano Energy 2012, 1, 13–24.

3

Larcher, L.; Roy, S.; Mallick, D.; Podder, P.; de Vittorio, M.; Todaro, T.; Guido, F.; Bertacchini, A.; Hinchet, R.; Keraudy, J. et al. Vibrational energy harvesting. In Beyond-CMOS Nanodevices 1; Balestra, F., Ed.; John Wiley & Sons, Inc. : Hoboken, NJ, USA, 2014.

DOI
4

Wang, Z. L. Energy harvesting for self-powered nanosystems. Nano Res. 2008, 1, 1–8.

5

Hwang, G. -T.; Byun, M.; Jeong, C. K.; Lee, K. J. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications. Adv. Healthcare Mater. 2015, 4, 646–658.

6

Dagdeviren, C.; Shi, Y.; Joe, P.; Ghaffari, R.; Balooch, G.; Usgaonkar, K.; Gur, O.; Tran, P. L.; Crosby, J. R.; Meyer, M. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 2015, 14, 728–736.

7

Park, K. I.; Son, J. H.; Hwang, G. T.; Jeong, C. K.; Ryu, J.; Koo, M.; Choi, I.; Lee, S. H.; Byun, M.; Wang, Z. L. et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 2014, 26, 2514–2520.

8

Jeong, C. K.; Park, K. -I.; Son, J. H.; Hwang, G. -T.; Lee, S. H.; Park, D. Y.; Lee, H. E.; Lee, H. K.; Byun, M.; Lee, K. J. Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ. Sci. 2014, 7, 4035–4043.

9

Hwang, G. T.; Park, H.; Lee, J. H.; Oh, S.; Park, K. I.; Byun, M.; Park, H.; Ahn, G.; Jeong, C. K.; No, K. et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 2014, 26, 4880–4887.

10

Hwang, G. -T.; Yang, J.; Yang, S. H.; Lee, H. -Y.; Lee, M.; Park, D. Y.; Han, J. H.; Lee, S. J.; Jeong, C. K.; Kim, J. et al. A reconfigurable rectified flexible energy harvester via solid-state single crystal grown PMN-PZT. Adv. Energy Mater. 2015, 5, 1500051.

11

Hwang, G. -T.; Kim, Y.; Lee, J. -H.; Oh, S.; Jeong, C. K.; Park, D. Y.; Ryu, J.; Kwon, H.; Lee, S. -G.; Joung, B. et al. Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy Environ. Sci. 2015, 8, 2677–2684.

12

Jeong, C. K.; Lee, J.; Han, S.; Ryu, J.; Hwang, G. -T.; Park, D. Y.; Park, J. H.; Lee, S. S.; Byun, M.; Ko, S. H. et al. A hyper-stretchable elastic-composite energy harvester. Adv. Mater. 2015, 27, 2866–2875.

13

Baek, S. H.; Park, J.; Kim, D. M.; Aksyuk, V. A.; Das, R. R.; Bu, S. D.; Felker, D. A.; Lettieri, J.; Vaithyanathan, V.; Bharadwaja, S. S. N. et al. Giant piezoelectricity on si for hyperactive MEMS. Science 2011, 334, 958–961.

14

Lee, H. J.; Zhang, S. J.; Luo, J.; Li, F.; Shrout, T. R. Thickness-dependent properties of relaxor-PbTiO3 ferroelectrics for ultrasonic transducers. Adv. Funct. Mater. 2010, 20, 3154–3162.

15

Kang, S. -J. L.; Park, J. -H.; Ko, S. -Y.; Lee, H. -Y. Solid-state conversion of single crystals: The principle and the state- of-the-art. J. Am. Ceram. Soc. 2015, 98, 347–360.

16

Du, X. H.; Zheng, J. H.; Belegundu, U.; Uchino, K. Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary. Appl. Phys. Lett. 1998, 72, 2421–2423.

17

Taylor, D. V.; Damjanovic, D. Piezoelectric properties of rhombohedral Pb(Zr, Ti)O3 thin films with (100), (111), and "random" crystallographic orientation. Appl. Phys. Lett. 2000, 76, 1615–1617.

18

Park, C. -S.; Kim, S. -W.; Park, G. -T.; Choi, J. -J.; Kim, H. -E. Orientation control of lead zirconate titanate film by combination of sol-gel and sputtering deposition. J. Mater. Res. 2005, 20, 243–246.

19

Qi, Y.; Jafferis, N. T.; Lyons, K., Jr.; Lee, C. M.; Ahmad, H.; McAlpine, M. C. Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett. 2010, 10, 524–525.

20

Brooks, K. G.; Reaney, I. M.; Klissurska, R.; Huang, Y.; Bursill, L.; Setter, N. Orientation of rapid thermally annealed lead zirconate titanate thin films on (111) Pt substrates. J. Mater. Res. 1994, 9, 2540–2553.

21

Kalpat, S.; Uchino, K. Highly oriented lead zirconium titanate thin films: Growth, control of texture, and its effect on dielectric properties. J. Appl. Phys. 2001, 90, 2703–2710.

22

Qin, H. X.; Zhu, J. S.; Jin, Z. Q.; Wang, Y. PZT thin films with preferred-orientation induced by external stress. Thin Solid Films 2000, 379, 72–75.

23

Cattan, E.; Velu, G.; Jaber, B.; Remiens, D.; Thierry, B. Structure control of Pb(Zr, Ti)O3 films using PbTiO3 buffer layers produced by magnetron sputtering. Appl. Phys. Lett. 1997, 70, 1718–1720.

24

Park, C. -H.; Son, Y. -G.; Won, M. -S. Microstructure and ferroelectric properties of r. f. magnetron sputtering derived PZT thin films deposited on interlayer (PbO/TiO2). Microchem. J. 2005, 80, 201–206.

25

Yeager, C. B.; Trolier-McKinstry, S. Epitaxial Pb(Zrx, Ti1−x)O3 (0.30 ≤ x ≤ 0.63) films on (100)MgO substrates for energy harvesting applications. J. Appl. Phys. 2012, 112, 074107.

26

Budd, K. D.; Dey, S. Y.; Payne, D. A. Sol-gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films. Br. Ceram. Proc. 1985, 36, 107–121.

27

Chen, S. -Y.; Chen, I. -W. Texture development, microstructure evolution, and crystallization of chemically derived PZT thin films. J. Am. Ceram. Soc. 2005, 81, 97–105.

28

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

29

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

30

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

31

Monkhorst, H. J.; Pack, J. D. Special points for brillouin- zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

32

Batirev, I. G.; Alavi, A.; Finnis, M. W. Equilibrium and adhesion of Nb/sapphire: The effect of oxygen partial pressure. Phys. Rev. B 2000, 62, 4698–4706.

33

Liu, L. M.; Wang, S. Q.; Ye, H. Q. First-principles study of polar Al/TiN(111) interfaces. Acta Mater. 2004, 52, 3681–3688.

34

Damjanovic, D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J. Am. Ceram. Soc. 2005, 88, 2663–2676.

35

Ibrahim, A. -B. M. A.; Murgan, R.; Abd Rahman, M. K.; Osman, J. Morphotropic phase boundary in ferroelectric materials. In Ferroelectrics - Physical Effects; Lallart, M., Ed.; InTech: Rijeka, Croatia, 2011.

36

Takayama, R.; Tomita, Y. Preparation of epitaxial Pb(ZrxTi1−x)O3 thin films and their crystallographic, pyroelectric, and ferroelectric properties. J. Appl. Phys. 1989, 65, 1666–1670.

37

Adachi, M.; Matsuzaki, T.; Yamada, T.; Shiosaki, T.; Kawabata, A. Sputter-deposition of [111]-axis oriented rhombohedral PZT films and their dielectric, ferroelectric and pyroelectric properties. Jpn. J. Appl. Phys. 1987, 26, 550–553.

38

Morimoto, K.; Kanno, I.; Wasa, K.; Kotera, H. High- efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers. Sensor. Actuat. A Phys. 2010, 163, 428–432.

39

Lotgering, F. K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J. Inorg. Nucl. Chem. 1959, 9, 113–123.

40

Cao, L. Z.; Fu, W. Y.; Wang, S. F.; Wang, Q.; Sun, Z. H.; Yang, H.; Cheng, B. L.; Wang, H.; Zhou, Y. L. Effects of film thickness and preferred orientation on the dielectric properties of (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7 films. J. Phys. D: Appl. Phys. 2007, 40, 2906–2910.

41

Li, W. L.; Zhang, T. D.; Xu, D.; Hou, Y. F.; Cao, W. P.; Fei, W. D. LaNiO3 seed layer induced enhancement of piezoelectric properties in (100)-oriented (1-x)BZT-xBCT thin films. J. Eur. Ceram. Soc. 2015, 35, 2041–2049.

42

Zhang, Y.; Xue, D. Z.; Wu, H. J.; Ding, X. D.; Lookman, T.; Ren, X. B. Adaptive ferroelectric state at morphotropic phase boundary: Coexisting tetragonal and rhombohedral phases. Acta Mater. 2014, 71, 176–184.

43

Souza Filho, A. G.; Lima, K. C. V.; Ayala, A. P.; Guedes, I.; Freire, P. T. C.; Melo, F. E. A.; Mendes Filho, J.; Araújo, E. B.; Eiras, J. A. Raman scattering study of the PbZr1–xTixO3 system: Rhombohedral-monoclinic-tetragonal phase transitions. Phys. Rev. B 2002, 66, 132107.

44

Camargo, E. R.; Frantti, J.; Kakihana, M. Low-temperature chemical synthesis of lead zirconate titanate (PZT) powders free from halides and organics. J. Mater. Chem. 2001, 11, 1875–1879.

45

Kühnlein, T.; Stiegelschmitt, A.; Roosen, A.; Rauscher, M. Microstructure development of PZT ceramics by doping with small amounts of Al2O3, SiO2, and Fe2O3. J. Am. Ceram. Soc. 2014, 97, 1638–1644.

46

Durruthy-Rodríguez, M. D.; Yáñez-Limón, J. M. Photoluminescence in doped PZT ferroelectric ceramic system. In Ferroelectrics - Physical Effects; Lallart, M., Ed.; InTech: Rijeka, Croatia, 2011.

47

Cho, S. B.; Chung, Y. C. Spin-polarized bandgap of graphene induced by alternative chemisorption with MgO (111) substrate. Carbon 2014, 77, 208–214.

48

Cho, S. B.; Chung, Y. -C. Bandgap engineering of graphene by corrugation on lattice-mismatched MgO (111). J. Mater. Chem. C 2013, 1, 1595–1600.

49

Cho, S. B.; Yun, K. H.; Yoo, D. S.; Ahn, K.; Chung, Y. C. Work function tuning of an ultrathin MgO film on an Ag substrate by generating oxygen impurities at the interface. Thin Solid Films 2013, 544, 541–544.

50

Cho, S. B.; Lee, S.; Chung, Y. -C. Water trapping at the graphene/Al2O3 interface. Jpn. J. Appl. Phys. 2013, 52, 06GD09.

51

Jin, Y. M.; Wang, Y. U.; Khachaturyan, A. G.; Li, J. F.; Viehland, D. Conformal miniaturization of domains with low domain-wall energy: Monoclinic ferroelectric states near the morphotropic phase boundaries. Phys. Rev. Lett. 2003, 91, 197601.

52

Chentir, M. -T.; Morioka, H.; Ehara, Y.; Saito, K.; Yokoyama, S.; Oikawa, T.; Funakubo, H. Changes of crystal structure and electrical properties with film thickness and Zr/(Zr+Ti) ratio for epitaxial Pb(Zr, Ti)O3 films grown on (100)cSrRuO3//(100)SrTiO3 substrates by metalorganic chemical vapor deposition. In Ferroelectrics-Characterization and Modeling. Lallart, M., Ed.; InTech: Rijeka, Croatia, 2011; pp. 229–244.

53

Boldyreva, K.; Pintilie, L.; Lotnyk, A.; Misirlioglu, I. B.; Alexe, M.; Hesse, D. Ferroelectric/antiferroelectric Pb(Zr0.8Ti0.2)O3/PbZrO3 epitaxial multilayers: Growth and thickness-dependent properties. Ferroelectrics 2008, 370, 140–146.

54

Du, X. H.; Belegundu, U.; Uchino, K. Crystal orientation dependence of piezoelectric properties in lead zirconate titanate: Theoretical expectation for thin films. Jpn. J. Appl. Phys. 1997, 36, 5580–5587.

55

Kwok, C. K.; Desu, S. B. Ceramic Transactions: Ferroelectric Films (Volume 25); The American Ceramic Society: Westerville, OH, USA, 1992.

56

Kwok, C. K.; Desu, S. B. Low temperature perovskite formation of lead zirconate titanate thin films by a seeding process. J. Mater. Res. 1993, 8, 339–344.

57

Park, S. -E.; Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 1997, 82, 1804–1811.

58

Lee, H. N.; Nakhmanson, S. M.; Chisholm, M. F.; Christen, H. M.; Rabe, K. M.; Vanderbilt, D. Suppressed dependence of polarization on epitaxial strain in highly polar ferroelectrics. Phys. Rev. Lett. 2007, 98, 217602.

59

Khan, A. I.; Yu, P.; Trassin, M.; Lee, M. J.; You, L.; Salahuddin, S. The effects of strain relaxation on the dielectric properties of epitaxial ferroelectric Pb(Zr0.2Ti0.8)TiO3 thin films. Appl. Phys. Lett. 2014, 105, 022903.

60

Park, C. -S.; Lee, J. -W.; Park, G. -T.; Kim, H. -E.; Choi, J. -J. Microstructural evolution and piezoelectric properties of thick Pb(Zr, Ti)O3 films deposited by the multi-sputtering method: Part II. Piezoelectric properties. J. Mater. Res. 2007, 22, 1373–1377.

61

Park, G. T.; Choi, J. J.; Ryu, J.; Fan, H. Q.; Kim, H. E. Measurement of piezoelectric coefficients of lead zirconate titanate thin films by strain-monitoring pneumatic loading method. Appl. Phys. Lett. 2002, 80, 4606–4608.

62

Jeong, C. K.; Kim, I.; Park, K. -I.; Oh, M. H.; Paik, H.; Hwang, G. -T.; No, K.; Nam, Y. S.; Lee, K. J. Virus- directed design of a flexible BaTiO3 nanogenerator. ACS Nano 2013, 7, 11016–11025.

63

An, Y. -K.; Sohn, H. Visualization of non-propagating lamb wave modes for fatigue crack evaluation. J. Appl. Phys. 2015, 117, 114904.

64

Kim, J.; Kim, K.; Sohn, H. In situ measurement of structural mass, stiffness, and damping using a reaction force actuator and a laser doppler vibrometer. Smart Mater. Struct. 2013, 22, 085004.

65

Zhou, Z.; Tang, H. X.; Sodano, H. A. Scalable synthesis of morphotropic phase boundary lead zirconium titanate nanowires for energy harvesting. Adv. Mater. 2014, 26, 7547–7554.

File
nr-10-2-437_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 August 2016
Revised: 20 September 2016
Accepted: 26 September 2016
Published: 02 November 2016
Issue date: February 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The authors would like to thank the CEO of RoboPrint Co., Jung Gyu Park. This study was backed up by the research project–Product Development of Wearable Self-Powered Energy Device and Integrated Self- Powered Energy Device from PEPS (No. G01150219). This research was supported by Nano·Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) (No. 2016M3A7B4910636). This is also supported by Global Frontier R & D Program on Center for Integrated Smart Sensors (No. CISS-2016M3A6A6929958) funded by MSIP through NRF of Korea government. This work was additionally supported by Basic Science Research Program through the NRF of Korea funded by MSIP (No. 2016R1A2B4010674).

Return