Journal Home > Volume 10 , Issue 5

In this work, atomic layer deposition (ALD) was employed to fabricate coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires. The morphology, microstructure, and ZnO shell thickness dependent electromagnetic and microwave absorbing properties of these Ni-Al2O3-ZnO nanowires were characterized. Excellent microwave absorbing properties with a minimum reflection loss (RL) of approximately –50 dB at 9.44 GHz were found for the Ni-Al2O3-100ZnO nanowires, which was 10 times of Ni-Al2O3 nanowires. The microwave absorption frequency could be effectively varied by simply adjusting the number of ZnO deposition cycles. The absorption peaks of Ni-Al2O3-100ZnO and Ni-Al2O3-150ZnO nanowires shifted of 5.5 and 6.8 GHz towards lower frequencies, respectively, occupying one third of the investigated frequency band. The enhanced microwave absorption arose from multiple loss mechanisms caused by the unique coaxial multi-interface structure, such as multi-interfacial polarization relaxation, natural and exchange resonances, as well as multiple internal reflections and scattering. These results demonstrate that the ALD method can be used to realize tailored nanoscale structures, making it a highly promising method for obtaining high- efficiency microwave absorbers, and opening a potentially novel route for frequency adjustment and microwave imaging fields.

File
nr-10-5-1595_ESM.pdf (846.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 July 2016
Revised: 15 September 2016
Accepted: 27 September 2016
Published: 02 November 2016
Issue date: May 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21376256 and 51132002), the Hundred Talents Program of the Chinese Academy of Sciences, the Hundred Talents Program of Shanxi Province, and Innovation Fund of Science and Technology for Graduate Students of BIT (Nos. 2015CX10029 and 2016CX06004.)

Return