Journal Home > Volume 10 , Issue 2

Hierarchically heterostructured hollow spheres are of great interest for a wide range of applications owing to their unique structural features and properties. However, the fabrication of well-defined hollow spheres with highly specific morphology for mixed transition metal oxides on a large scale remains challenging. In this work, uniform rambutan-like heterostructured CeO2-CuO hollow microspheres with numerous copper–ceria interfacial sites and nanorods and nanoparticles as building blocks are prepared via a facile hydrothermal method followed by calcination. Importantly, this approach can be readily scaled up and is applicable to the synthesis of various CuO-based mixed metal oxide complex hollow spheres. The as-prepared CeO2-CuO hollow rambutans exhibit superior performance both as electrode materials for supercapacitors and as Cu-based catalysts for the Rochow reaction, mainly due to the small primary nanoparticle constituents, high surface area, and formation of numerous interior heterostructures.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rambutan-like hierarchically heterostructured CeO2-CuO hollow microspheres: Facile hydrothermal synthesis and applications

Show Author's information Yongjun Ji1,§( )Zheying Jin1,§Jing Li1,2Yu Zhang1,2Hezhi Liu1Laishun Shi3Ziyi Zhong4,5Fabing Su1( )
State Key Laboratory of Multiphase Complex SystemsInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
University of Chinese Academy of SciencesBeijing100049China
School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
Institute of Chemical Engineering and Sciences1 Pesek RoadJurong IslandSingapore627833Singapore
School of Chemical & Biomedical EngineeringNanyang Technological University (NTU)62 Nanyang DriveSingapore637459Singapore

§ These authors contributed equally to this work.

Abstract

Hierarchically heterostructured hollow spheres are of great interest for a wide range of applications owing to their unique structural features and properties. However, the fabrication of well-defined hollow spheres with highly specific morphology for mixed transition metal oxides on a large scale remains challenging. In this work, uniform rambutan-like heterostructured CeO2-CuO hollow microspheres with numerous copper–ceria interfacial sites and nanorods and nanoparticles as building blocks are prepared via a facile hydrothermal method followed by calcination. Importantly, this approach can be readily scaled up and is applicable to the synthesis of various CuO-based mixed metal oxide complex hollow spheres. The as-prepared CeO2-CuO hollow rambutans exhibit superior performance both as electrode materials for supercapacitors and as Cu-based catalysts for the Rochow reaction, mainly due to the small primary nanoparticle constituents, high surface area, and formation of numerous interior heterostructures.

Keywords: heterostructure, supercapacitors, hollow sphere, Rochow reaction, rambutan

References(49)

1

Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711–714.

2

Gonzalez, E.; Arbiol, J.; Puntes, V. F. Carving at the nanoscale: Sequential galvanic exchange and Kirkendall growth at room temperature. Science 2011, 334, 1377–1380.

3

Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Enhanced ethanol production inside carbon- nanotube reactors containing catalytic particles. Nat. Mater. 2007, 6, 507–511.

4

Ameloot, R.; Vermoortele, F.; Vanhove, W.; Roeffaers, M. B. J.; Sels, B. F.; De Vos, D. E. Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability. Nat. Chem. 2011, 3, 382–387.

5

Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/ nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.

6

Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.

7

Hu, J.; Chen, M.; Fang, X. S.; Wu, L. M. Fabrication and application of inorganic hollow spheres. Chem. Soc. Rev. 2011, 40, 5472–5491.

8

Lai, X. Y.; Halpert, J. E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ. Sci. 2012, 5, 5604–5618.

9

Yu, L.; Wu, H. B.; Lou, X. W. Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv. Mater. 2013, 25, 2296–2300.

10

Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res. 2016, 9, 2026–2033.

11

Ibáñez, M.; Cabot, A. All change for nanocrystals. Science 2013, 340, 935–936.

12

Zhang, L.; Wu, H. B.; Lou, X. W. Metal-organic- frameworks-derived general formation of hollow structures with high complexity. J. Am. Chem. Soc. 2013, 135, 10664– 10672.

13

Nai, J. W.; Tian, Y.; Guan, X.; Guo, L. Pearson's principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc. 2013, 135, 16082–16091.

14

Caruso, F.; Caruso, R. A.; Möhwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 1998, 282, 1111–1114.

15

Kim, S. W.; Kim, M.; Lee, W. Y.; Hyeon, T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J. Am. Chem. Soc. 2002, 124, 7642–7943.

16

Pan, A. Q.; Wu, H. B.; Yu, L.; Lou, X. W. Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew. Chem., Int. Ed. 2013, 52, 2226–2230.

17

Lou, X. W.; Wang, Y.; Yuan, C. L.; Lee, J. Y.; Archer, L. A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 2006, 18, 2325–2329.

18

Ding, Y.; Xia, X.; Chen, W. C.; Hu, L. H.; Mo, L.; Huang, Y.; Dai, S. Y. Inside-out Ostwald ripening: A facile process towards synthesizing anatase TiO2 microspheres for high- efficiency dye-sensitized solar cells. Nano Res. 2016, 9, 1891–1903.

19

Wang, X.; Wu, X. L.; Guo, Y. G.; Zhong, Y. T.; Cao, X. Q.; Ma, Y.; Yao, J. N. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 2010, 20, 1680–1686.

20

Wang, B.; Wu, H. B.; Zhang, L.; Lou, X. W. Self-supported construction of uniform Fe3O4 hollow microspheres from nanoplate building blocks. Angew. Chem., Int. Ed. 2013, 52, 4165–4168.

21

Ma, F. X.; Hu, H.; Wu, H. B.; Xu, C. Y.; Xu, Z. C.; Zhen, L.; Lou, X. W. Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties. Adv. Mater. 2015, 27, 4097–4101.

22

Carreon, M. A.; Guliants, V. V. Ordered meso- and macroporous binary and mixed metal oxides. Eur. J. Inorg. Chem. 2005, 2005, 27–43.

23

Morris, C. A.; Anderson, M. L.; Stroud, R. M.; Merzbacher, C. I.; Rolison, D. R. Silica sol as a nanoglue: Flexible synthesis of composite aerogels. Science 1999, 284, 622–624.

24

Zeng, M.; Li, Y. Z.; Mao, M. Y.; Bai, J. L.; Ren, L.; Zhao, X. J. Synergetic effect between photocatalysis on TiO2 and thermocatalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites. ACS Catal. 2015, 5, 3278–3286.

25

Warule, S. S.; Chaudhari, N. S.; Kale, B. B.; Patil, K. R.; Koinkar, P. M.; More, M. A.; Murakami, R. Organization of cubic CeO2 nanoparticles on the edges of self assembled tapered ZnO nanorods via a template free one-pot synthesis: significant cathodoluminescence and field emission properties. J. Mater. Chem. 2012, 22, 8887–8895.

26

Hornés, A.; Hungría, A. B.; Bera, P.; López Cámara, A.; Fernández-García, M.; Martínez-Arias, A.; Barrio, L.; Estrella, M.; Zhou, G.; Fonseca, J. J. et al. Inverse CeO2/CuO catalyst as an alternative to classical direct configurations for preferential oxidation of CO in hydrogen-rich stream. J. Am. Chem. Soc. 2010, 132, 34–35.

27

López Cámara, A.; Cortés Corberán, V.; Barrio, L.; Zhou, G.; Si, R.; Hanson, J. C.; Monte, M.; Conesa, J. C.; Rodriguez, J. A.; Martínez-Arias, A. Improving the CO-PROX performance of inverse CeO2/CuO catalysts: Doping of the CuO component with Zn. J. Phys. Chem. C 2014, 118, 9030–9041.

28

Yen, H.; Seo, Y.; Kaliaguine, S.; Kleitz, F. Tailored mesostructured copper/ceria catalysts with enhanced performance for preferential oxidation of CO at low temperature. Angew. Chem., Int. Ed. 2012, 51, 12032–12035.

29

Liu, P.; Hensen, E. J. M. Highly efficient and robust Au/ MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J. Am. Chem. Soc. 2013, 135, 14032–14035.

30

Ma, J. H.; Jin, G. Z.; Gao, J. B.; Li, Y. Y.; Dong, L. H.; Huang, M. N.; Huang, Q. Q.; Li, B. Catalytic effect of two-phase intergrowth and coexistence CuO–CeO2. J. Mater. Chem. A 2015, 3, 24358–24370.

31

Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141.

32

Avgouropoulos, G.; Ioannides, T. Effect of synthesis parameters on catalytic properties of CuO-CeO2. Appl. Catal. B: Environ. 2006, 67, 1–11.

33

Polster, C. S.; Nair, H.; Baertsch, C. D. Study of active sites and mechanism responsible for highly selective CO oxidation in H2 rich atmospheres on a mixed Cu and Ce oxide catalyst. J. Catal. 2009, 266, 308–319.

34

Kydd, R.; Teoh, W. Y.; Wong, K.; Wang, Y.; Scott, J.; Zeng, Q. -H.; Yu, A. -B.; Zou, J.; Amal, R. Flame-synthesized ceria-supported copper dimers for preferential oxidation of CO. Adv. Funct. Mater. 2009, 19, 369–377.

35

Li, Z. Q.; Wang, H. L.; Zi, L. Y.; Zhang, J. J.; Zhang, Y. S. Preparation and photocatalytic performance of magnetic TiO2-Fe3O4/graphene (RGO) composites under VIS-light irradiation. Ceram. Int. 2015, 41, 10634–10643.

36

Shanmugavani, A. L.; Selvan, R. K. Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors. Electrochim. Acta 2016, 188, 852–862.

37

Hurd, D. T.; Rochow, E. G. On the mechanism of the reaction between methyl chloride and silicon-copper. J. Am. Chem. Soc. 1945, 67, 1057–1059.

38

Rochow, E. G. The direct synthesis of organosilicon compounds. J. Am. Chem. Soc. 1945, 67, 963–965.

39

Jin, Z. Y.; Li, J.; Shi, L. S.; Ji, Y. J.; Zhong, Z. Y.; Su, F. B. One-pot hydrothermal growth of raspberry-like CeO2 on CuO microsphere as copper-based catalyst for Rochow reaction. Appl. Sur. Sci. 2015, 359, 120–129.

40

Ward, W. J.; Ritzer, A.; Carroll, K. M.; Flock, J. W. Catalysis of the Rochow direct process. J. Catal. 1986, 100, 240–249.

41

Floquet, N.; Yilmaz, S.; Falconer, J. L. Interaction of copper catalysts and Si(100) for the direct synthesis of methylchlorosilanes. J. Catal. 1994, 148, 348–368.

42

Luo, W. X.; Wang, G. R.; Wang, J. F. Effect of CuCl particle size on the reduction reaction by silicon in preparation of contact mass used for methylchlorosilane synthesis. Ind. Eng. Chem. Res. 2006, 45, 129–133.

43

Somorjai, G. A.; Park, J. Y. Molecular factors of catalytic selectivity. Angew. Chem., Int. Ed. 2008, 47, 9212–228.

44

Honkala, K.; Hellman, A.; Remediakis, I. N.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K. Ammonia synthesis from first-principles calculations. Science 2005, 307, 555–558.

45

Kwak, J. H.; Hu, J. Z.; Mei, D. H.; Yi, C. W.; Kim, D. H.; Peden, C. H. F.; Allard, L. F.; Szanyi, J. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 2009, 325, 1670–1673.

46

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

47

Fu, Q.; Li, W. X.; Yao, Y. X.; Liu, H. Y.; Su, H. Y.; Ma, D.; Gu, X. K.; Chen, L. M.; Wang, Z.; Zhang, H. et al. Interface- confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141–1144.

48

Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O'Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824–7831.

49

Rong, H. P.; Mao, J. J.; Xin, P. Y.; He, D. S.; Chen, Y. J.; Wang, D. S.; Niu, Z. Q.; Wu, Y. E.; Li, Y. D. Kinetically controlling surface structure to construct defect-rich intermetallic nanocrystals: Effective and stable catalysts. Adv. Mater. 2016, 28, 2540–2546.

File
nr-10-2-381_ESM.pdf (8.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 July 2016
Revised: 20 September 2016
Accepted: 23 September 2016
Published: 27 October 2016
Issue date: February 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Nos. 21506224, and 51272252). Z. Y. Z. would like to thank ICES for the kind support of the collaboration.

Return