Journal Home > Volume 10 , Issue 2

The fast growth of large single-crystalline graphene by chemical vapor deposition on Cu foil remains a challenge for industrial-scale applications. To achieve the fast growth of large single-crystalline graphene, understanding the detailed dynamics governing the entire growth process—including nucleation, growth, and coalescence—is important; however, these remain unexplored. In this study, by using a pulsed carbon isotope labeling technique in conjunction with micro-Raman spectroscopy identification, we visualized the growth dynamics, such as nucleation, growth, and coalescence, during the fast growth of large single- crystalline graphene domains. By tuning the supply of the carbon source, a growth rate of 320 μm/min and the growth of centimeter-sized graphene single crystals were achieved on Cu foil.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Visualizing fast growth of large single-crystalline graphene by tunable isotopic carbon source

Show Author's information Luzhao Sun1,2,§Li Lin1,§Jincan Zhang1,2Huan Wang1Hailin Peng1( )Zhongfan Liu1( )
Center for NanochemistryBeijing Science and Engineering Center for NanocarbonsBeijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China

§ These authors contributed equally to this work.

Abstract

The fast growth of large single-crystalline graphene by chemical vapor deposition on Cu foil remains a challenge for industrial-scale applications. To achieve the fast growth of large single-crystalline graphene, understanding the detailed dynamics governing the entire growth process—including nucleation, growth, and coalescence—is important; however, these remain unexplored. In this study, by using a pulsed carbon isotope labeling technique in conjunction with micro-Raman spectroscopy identification, we visualized the growth dynamics, such as nucleation, growth, and coalescence, during the fast growth of large single- crystalline graphene domains. By tuning the supply of the carbon source, a growth rate of 320 μm/min and the growth of centimeter-sized graphene single crystals were achieved on Cu foil.

Keywords: large single-crystalline graphene, fast growth, isotope labelling, carbon source

References(36)

1

Novoselov, K. S.; Geim, A. K. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

2

Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum hall effect and berry's phase in graphene. Nature 2005, 438, 201–204.

3

Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622.

4

Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, J. Q.; Zhang, H. Graphene-based electrodes. Adv. Mater. 2012, 24, 5979–6004.

5

Hao, Y. F.; Bharathi, M. S.; Wang, L.; Liu, Y. Y.; Chen, H.; Nie, S.; Wang, X. H.; Chou, H.; Tan, C.; Fallahazad, B. et al. The role of surface oxygen in the growth of large single- crystal graphene on copper. Science 2013, 342, 720–723.

6

Zhou, H. L.; Yu, W. J.; Liu, L. X.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Wang, Y.; Huang, Y.; Duan, X. F. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 2013, 4, 2096.

7

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

8

Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

9

Bhaviripudi, S.; Jia, X. T.; Dresselhaus, M. S.; Kong, J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 2010, 10, 4128–4133.

10

Li, X. S.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 2011, 133, 2816–2819.

11

Yan, Z.; Lin, J.; Peng, Z. W.; Sun, Z. Z.; Zhu, Y.; Li, L.; Xiang, C. S.; Samuel, E. L.; Kittrell, C.; Tour, J. M. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 2012, 6, 9110–9117.

12

Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509–516.

13

Lin, L.; Li, J. Y.; Ren, H. Y.; Koh, A. L.; Kang, N.; Peng, H. L.; Xu, H. Q.; Liu, Z. F. Surface engineering of copper foils for growing centimeter-sized single-crystalline graphene. ACS Nano 2016, 10, 2922–2929.

14

Geng, D. C.; Wang, H. P.; Yu, G. Graphene single crystals: Size and morphology engineering. Adv. Mater. 2015, 27, 2821–2837.

15

Li, X. S.; Colombo, L.; Ruoff, R. S. Synthesis of graphene films on copper foils by chemical vapor deposition. Adv. Mater. 2016, 28, 6247–6252.

16

Wu, T. R.; Zhang, X. F.; Yuan, Q. H.; Xue, J. C.; Lu, G. Y.; Liu, Z. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Yu, Q. K. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat. Mater. 2016, 15, 43–48.

17

Yan, K.; Fu, L.; Peng, H. L.; Liu, Z. F. Designed CVD growth of graphene via process engineering. Acc. Chem. Res. 2013, 46, 2263–2274.

18

Gao, J. F.; Yip, J.; Zhao, J. J.; Yakobson, B. I.; Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 2011, 133, 5009–5015.

19

Yuan, Q. H.; Gao, J. F.; Shu, H. B.; Zhao, J. J.; Chen, X. S.; Ding, F. Magic carbon clusters in the chemical vapor deposition growth of graphene. J. Am. Chem. Soc. 2012, 134, 2970–2975.

20

Zhang, X. Y.; Wang, L.; Xin, J.; Yakobson, B. I.; Ding, F. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. J. Am. Chem. Soc. 2014, 136, 3040–3047.

21

Kidambi, P. R.; Bayer, B. C.; Blume, R.; Wang, Z. J.; Baehtz, C.; Weatherup, R. S.; Willinger, M. G.; Schloegl, R.; Hofmann, S. Observing graphene grow: Catalyst–graphene interactions during scalable graphene growth on polycrystalline copper. Nano Lett. 2013, 13, 4769–4778.

22

Wang, Z. J.; Weinberg, G.; Zhang, Q.; Lunkenbein, T.; Klein-Hoffmann, A.; Kurnatowska, M.; Plodinec, M.; Li, Q.; Chi, L. F.; Schloegl, R. et al. Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 2015, 9, 1506–1519.

23

Terasawa, T. O.; Saiki, K. Radiation-mode optical microscopy on the growth of graphene. Nat. Commun. 2015, 6, 6834.

24

Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.

25

Li, X. S.; Magnuson, C. W.; Venugopal, A.; An, J. H.; Suk, J. W.; Han, B. Y.; Borysiak, M.; Cai, W. W.; Velamakanni, A.; Zhu, Y. W. et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010, 10, 4328–4334.

26

Fang, W. J.; Hsu, A. L.; Caudillo, R.; Song, Y.; Birdwell, A. G.; Zakar, E.; Kalbac, M.; Dubey, M.; Palacios, T.; Dresselhaus, M. S. et al. Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by Raman spectroscopy. Nano Lett. 2013, 13, 1541–1548.

27

Li, Q. Y.; Chou, H.; Zhong, J. H.; Liu, J. Y.; Dolocan, A.; Zhang, J. Y.; Zhou, Y. H.; Ruoff, R. S.; Chen, S. S.; Cai, W. W. Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett. 2013, 13, 486–490.

28

Zhao, Z. J.; Shan, Z. F.; Zhang, C. K.; Li, Q. Y.; Tian, B.; Huang, Z. Y.; Lin, W. Y.; Chen, X. P.; Ji, H. X.; Zhang, W. F. et al. Study on the diffusion mechanism of graphene grown on copper pockets. Small 2015, 11, 1418–1422.

29

Cai, W. W.; Piner, R. D.; Stadermann, F. J.; Park, S.; Shaibat, M. A.; Ishii, Y.; Yang, D. X.; Velamakanni, A.; An, S. J.; Stoller, M. et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 2008, 321, 1815–1817.

30

Carvalho, B. R.; Hao, Y. F.; Righi, A.; Rodriguez-Nieva, J. F.; Colombo, L.; Ruoff, R. S.; Pimenta, M. A.; Fantini, C. Probing carbon isotope effects on the Raman spectra of graphene with different 13C concentrations. Phys. Rev. B 2015, 92, 125406.

31

Wang, H.; Xu, X. Z.; Li, J. Y.; Lin, L.; Sun, L. Z.; Sun, X.; Zhao, S. L.; Tan, C. W.; Chen, C.; Dang, W. H. et al. Surface monocrystallization of copper foil for fast growth of large single-crystal graphene under free molecular flow. Adv. Mater. , in press, DOI: 10.1002/adma.201603579.

32

Vlassiouk, I.; Regmi, M.; Fulvio, P. F.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. Acs Nano 2011, 5, 6069–6076.

33

Ma, T.; Ren, W. C.; Liu, Z. B.; Huang, L.; Ma, L. -P.; Ma, X. L.; Zhang, Z. Y.; Peng, L. -M.; Cheng, H. -M. Repeated growth–etching–regrowth for large-area defect-free single- crystal graphene by chemical vapor deposition. Acs Nano 2014, 8, 12806–12813.

34
Whiteway, E.; Yang, W.; Yu, V.; Hilke, M. Time evolution of the growth of single graphene crystals and high resolution isotope labeling. 2015, arXiv: 1509.01579. arXiv. org e-Print archive. http://arxiv.org/abs/1509.01579 (accessed Jul 27, 2015).
35

Lin, L.; Sun, L. Z.; Zhang, J. C.; Sun, J. Y.; Koh, A. L.; Peng, H. L.; Liu, Z. F. Rapid growth of large single- crystalline graphene via second passivation and multistage carbon supply. Adv. Mater. 2016, 28, 4671–4677.

36

Wang, S. N.; Suzuki, S.; Hibino, H. Raman spectroscopic investigation of polycrystalline structures of CVD-grown graphene by isotope labeling. Nanoscale 2014, 6, 13838– 13844.

File
nr-10-2-355_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 July 2016
Revised: 01 September 2016
Accepted: 23 September 2016
Published: 07 November 2016
Issue date: February 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was financially supported by the National Basic Research Program of China (Nos. 2013CB932603, 2012CB933404 and 2014CB932500), the National Natural Science Foundation of China (Nos. 51432002, 51520105003, and 21525310), National Program for Support of Top-Notch Young Professionals, and Beijing Municipal Science & Technology Commission (No. Z161100002116002).

Return