Journal Home > Volume 10 , Issue 2

In this study, the use of a thermally stable Ir/Ce0.9La0.1O2 catalyst was investigated for the dry reforming of methane. The doping of La2O3 into the CeO2 lattice enhanced the chemical and physical properties of the Ir/Ce0.9La0.1O2 catalyst, such as redox properties, Ir dispersion, oxygen storage capacity, and thermal stability, with respect to the Ir/CeO2 catalyst. Hence, the Ir/Ce0.9La0.1O2 catalyst exhibits higher activity and stabler performance for the dry reforming of methane than the Ir/CeO2 catalyst. This observation can be mainly attributed to the stronger interaction between the metal and support in the Ir/Ce0.9La0.1O2 catalyst stabilizing the catalyst structure and improving the oxygen storage capacity, leading to negligible aggregation of Ir nanoparticles and the Ce0.9La0.1O2 support at high temperatures, as well as the rapid removal of carbon deposits at the boundaries between the Ir metal and the Ce0.9La0.1O2 support.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Thermally stable Ir/Ce0.9La0.1O2 catalyst for high temperature methane dry reforming reaction

Show Author's information Fagen Wang1,2( )Leilei Xu3Weidong Shi2Jian Zhang4Kai Wu5Yu Zhao6Hui Li6He Xing Li6Guo Qin Xu1,4( )Wei Chen1,4,7( )
Laboratory of Energy and Environment Interface EngineeringNational University of Singapore Suzhou Research InstituteSuzhou215123China
School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiang212013China
School of Environmental Science and EngineeringJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution ControlCollaborative Innovation Center of the Atmospheric Environment and Equipment TechnologyNanjing University of Information Science & TechnologyNanjing210044China
Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
Department of ChemistryShanghai Normal UniversityShanghai200234China
Singapore-Peking University Research Center for a Sustainable Low-Carbon Future1 CREATE Way#15-01CREATE TowerSingapore138602Singapore

Abstract

In this study, the use of a thermally stable Ir/Ce0.9La0.1O2 catalyst was investigated for the dry reforming of methane. The doping of La2O3 into the CeO2 lattice enhanced the chemical and physical properties of the Ir/Ce0.9La0.1O2 catalyst, such as redox properties, Ir dispersion, oxygen storage capacity, and thermal stability, with respect to the Ir/CeO2 catalyst. Hence, the Ir/Ce0.9La0.1O2 catalyst exhibits higher activity and stabler performance for the dry reforming of methane than the Ir/CeO2 catalyst. This observation can be mainly attributed to the stronger interaction between the metal and support in the Ir/Ce0.9La0.1O2 catalyst stabilizing the catalyst structure and improving the oxygen storage capacity, leading to negligible aggregation of Ir nanoparticles and the Ce0.9La0.1O2 support at high temperatures, as well as the rapid removal of carbon deposits at the boundaries between the Ir metal and the Ce0.9La0.1O2 support.

Keywords: metal–support interaction, thermally stable catalyst, Ir/Ce0.9La0.1O2, methane dry reforming

References(59)

1

Song, C. S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today 2006, 115, 2–32.

2

Satthawong, R.; Koizumi, N.; Song, C. S.; Prasassarakich, P. Bimetallic Fe–Co catalysts for CO2 hydrogenation to higher hydrocarbons. J. CO2 Util. 2013, 3–4, 102–106.

3

Pakhare, D.; Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813–7837.

4

Olajire, A. A. Valorization of greenhouse carbon dioxide emissions into value-added products by catalytic processes. J. CO2 Util. 2013, 3–4, 74–92.

5

Xie, T.; Zhao, X. Y.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Ni nanoparticles immobilized Ce-modified mesoporous silica via a novel sublimation-deposition strategy for catalytic reforming of methane with carbon dioxide. Int. J. Hydrogen Energy 2015, 40, 9685–9695.

6

Jiao, F.; Li, J. J.; Pan, X. L.; Xiao, J. P.; Li, H. B.; Ma, H.; Wei, M. M.; Pan, Y.; Zhou, Z. Y.; Li, M. R. et al. Selective conversion of syngas to light olefins. Science 2016, 351, 1065–1068.

7

Liu, C. J.; Ye, J. Y.; Jiang, J. J.; Pan, Y. X. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. ChemCatChem 2011, 3, 529–541.

8

Du, X. J.; Zhang, D. S.; Gao, R. H.; Huang, L.; Shi, L. Y.; Zhang, J. P. Design of modular catalysts derived from NiMgAl-LDH@m-SiO2 with dual confinement effects for dry reforming of methane. Chem. Commun. 2013, 49, 6770–6772.

9

Pechimuthu, N. A.; Pant, K. K.; Dhingra, S. C. Deactivation studies over Ni-K/CeO2-Al2O3 catalyst for dry reforming of methane. Ind. Eng. Chem. Res. 2007, 46, 1731–1736.

10

Yang, W. W.; Liu, H. M.; Li, Y. M.; Zhang, J.; Wu, H.; He, D. H. Properties of yolk–shell structured Ni@SiO2 nanocatalyst and its catalytic performance in carbon dioxide reforming of methane to syngas. Catal. Today 2016, 259, 438–445.

11

Xie, T.; Shi, L. Y.; Zhang, J. P.; Zhang, D. S. Immobilizing Ni nanoparticles to mesoporous silica with size and location control via a polyol-assisted route for coking- and sintering- resistant dry reforming of methane. Chem. Commun. 2014, 50, 7250–7253.

12

Zhao, X. Y.; Li, H. R.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Design and synthesis of NiCe@m-SiO2 yolk–shell framework catalysts with improved coke- and sintering-resistance in dry reforming of methane. Int. J. Hydrogen Energy 2016, 41, 2447–2456.

13

Du, X. J.; Zhang, D. S.; Shi, L. Y.; Gao, R. H.; Zhang, J. P. Coke- and sintering-resistant monolithic catalysts derived from in situ supported hydrotalcite-like films on Al wires for dry reforming of methane. Nanoscale 2013, 5, 2659–2663.

14

Theofanidis, S. A.; Galvita, V. V.; Poelman, H.; Marin, G. B. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe. ACS Catal. 2015, 5, 3028–3039.

15

Bobrova, L. N.; Bobin, A. S.; Mezentseva, N. V.; Sadykov, V. A.; Thybaut, J. W.; Marin, G. B. Kinetic assessment of dry reforming of methane on Pt + Ni containing composite of fluorite-like structure. Appl. Catal. B: Environ. 2016, 182, 513–524.

16

Mark, M. F.; Maier, W. F. CO2-reforming of methane on supported Rh and Ir catalysts. J. Catal. 1996, 164, 122–130.

17

Souza, M. M. V. M.; Aranda, D. A. G.; Schmal, M. Reforming of methane withe carbon dioxide over Pt/ZrO2/Al2O3 catalysts. J. Catal. 2001, 204, 498–511.

18

Ashcroft, A. T.; Cheetham, A. K.; Green, M. L. H.; Vernon, P. D. F. Partial oxidation of methane to synthesis gas using carbon dioxide. Nature 1991, 352, 225–226.

19

Li, W. Z.; Kovarik, L.; Mei, D. H.; Liu, J.; Wang, Y.; Peden, C. H. F. Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres. Nat. Commun. 2013, 4, 2481.

20

Adijanto, L.; Bennett, D. A.; Chen, C.; Yu, A. S.; Cargnello, M.; Fornasiero, P.; Gorte, R. J.; Vohs, J. M. Exceptional thermal stability of Pd@CeO2 core–shell catalyst nanostructures grafted onto an oxide surface. Nano Lett. 2013, 13, 2252–2257.

21

Wang, F. G.; Xu, L. L.; Zhang, J.; Zhao, Y.; Li, H.; Li, H. X.; Wu, K.; Xu, G. Q.; Chen, W. Tuning the metal–support interaction in catalysts for highly efficient methane dry reforming reaction. Appl. Catal. B: Environ. 2016, 180, 511–520.

22

Singh, S.; Zubenko, D.; Rosen, B. A. Influence of LaNiO3 shape on its solid-phase crystallization into coke-free reforming catalysts. ACS Catal. 2016, 6, 4199–4205.

23

Farmer, J. A.; Campbell, C. T. Ceria maintains smaller metal catalyst particles by strong metal–support bonding. Science 2010, 329, 933–936.

24

Li, Y.; Shen, W. J. Morphology-dependent nanocatalysts: Rod-shaped oxides. Chem. Soc. Rev. 2014, 43, 1543–1574.

25

Masias, K. L. S.; Peck, T. C.; Fanson, P. T. Thermally robust core–shell material for automotive 3-way catalysis having oxygen storage capacity. RSC Adv. 2015, 5, 48851–48855.

26

Bedrane, S.; Descorme, C.; Duprez, D. Investigation of the oxygen storage process on ceria- and ceria–zirconia- supported catalysts. Catal. Today 2002, 75, 401–405.

27

Cai, W. J.; Wang, F. G.; Daniel, C.; van Veen, A. C.; Schuurman, Y.; Descorme, C.; Provendier, H.; Shen, W. J.; Mirodatos, C. Oxidative steam reforming of ethanol over Ir/CeO2 catalysts: A structure sensitivity analysis. J. Catal. 2012, 286, 137–152.

28

Postole, G.; Nguyen, T. -S.; Aouine, M.; Gélin, P.; Cardenas, L.; Piccolo, L. Efficient hydrogen production from methane over iridium-doped ceria catalysts synthesized by solution combustion. Appl. Catal. B: Environ. 2015, 166–167, 580–591.

29

Matei-Rutkovska, F.; Postole, G.; Rotaru, C. G.; Florea, M.; Pârvulescu, V. I.; Gelin, P. Synthesis of ceria nanopowders by microwave-assisted hydrothermal method for dry reforming of methane. Int. J. Hydrogen Energy 2016, 41, 2512–2525.

30

Laosiripojana, N.; Assabumrungrat, S. Catalytic dry reforming of methane over high surface area ceria. Appl. Catal. B: Environ. 2005, 60, 107–116.

31

Wang, F. G.; Cai, W. J.; Tana; Provendier, H.; Schuurman, Y.; Descorme, C.; Mirodatos, C.; Shen, W. J. Ageing analysis of a model Ir/CeO2 catalyst in ethanol steam reforming. Appl. Catal. B: Environ. 2012, 125, 546–555.

32

Odedairo, T.; Chen, J. L.; Zhu, Z. H. Metal-support interface of a novel Ni-CeO2 catalyst for dry reforming of methane. Catal. Commun. 2013, 31, 25–31.

33

Du, X. J.; Zhang, D. S.; Shi, L. Y.; Gao, R. H.; Zhang, J. P. Morphology dependence of catalytic properties of Ni/CeO2 nanostructures for carbon dioxide reforming of methane. J. Phys. Chem. C 2012, 116, 10009–10016.

34

Hou, T. F.; Yu, B.; Zhang, S. Y.; Zhang, J. H.; Wang, D. Z.; Xu, T. K.; Cui, L.; Cai, W. J. Hydrogen production from propane steam reforming over Ir/Ce0.75Zr0.25O2 catalyst. Appl. Catal. B: Environ. 2015, 168–169, 524–530.

35

Wisniewski, M.; Boréave, A.; Gélin, P. Catalytic CO2 reforming of methane over Ir/Ce0.9Gd0.1O2-x. Catal. Commun. 2005, 6, 596–600.

36

Petallidou, K. C.; Efstathiou, A. M. Low-temperature water- gas shift on Pt/Ce1-xLaxO2-δ: Effect of Ce/La ratio. Appl. Catal. B: Environ. 2013, 140–141, 333–347.

37

Wang, F. G.; Xu, L. L.; Yang, J.; Zhang, J.; Zhang, L. Z.; Li, H.; Zhao, Y.; Li, H. X.; Wu, K.; Xu, G. Q. et al. Enhanced catalytic performance of Ir catalysts supported on ceria-based solid solutions for methane dry reforming reaction. Catal. Today, in press, DOI: 10.1016/j.cattod.2016.03.055.

38

Mears, D. E. Tests for transport limitations in experimental catalytic reactors. Ind. Eng. Chem. Process Des. Develop. 1971, 10, 541–547.

39

Oyama, S. T.; Zhang, X. M.; Lu, J. Q.; Gu, Y. F.; Fujitani, T. Epoxidation of propylene with H2 and O2 in the explosive regime in a packed-bed catalytic membrane reactor. J. Catal. 2008, 257, 1–4.

40

He, H.; Dai, H. X.; Au, C. T. Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE = Ce, Pr) solid solutions. Catal. Today 2004, 90, 245–254.

41

Huang, M.; Fabris, S. Role of surface peroxo and superoxo species in the low-temperature oxygen buffering of ceria: Density functional theory calculations. Phys. Rev. B 2007, 75, 081404.

42

Guzman, J.; Carrettin, S.; Corma, A. Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. J. Am. Chem. Soc. 2005, 127, 3286–3287.

43

Trovarelli, A. Catalytic properties of ceria and CeO2- containing materials. Catal. Rev. 1996, 38, 439–520.

44

Reddy, B. M.; Thrimurthulu, G.; Katta, L.; Yamada, Y.; Park, S. E. Structural characteristics and catalytic activity of nanocrystalline ceria-praseodymia solid solutions. J. Phys. Chem. C 2009, 113, 15882–15890.

45

Wang, F. G.; Cai, W. J.; Provendier, H.; Schuurman, Y.; Descorme, C.; Mirodatos, C.; Shen, W. J. Hydrogen production from ethanol steam reforming over Ir/CeO2 catalysts: Enhanced stability by PrOx promotion. Int. J. Hydrogen Energy 2011, 36, 13566–13574.

46

Larachi, F.; Pierre, J.; Adnot, A.; Bernis, A. Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts. Appl. Surf. Sci. 2002, 195, 236–250.

47

Jia, T. K.; Wang, W. M.; Long, F.; Fu, Z. Y.; Wang, H.; Zhang, Q. J. Fabrication, characterization and photocatalytic activity of La-doped ZnO nanowires. J. Alloy Compd. 2009, 484, 410–415.

48

Luo, M. F.; Zhong, Y. J.; Zhu, B.; Yuan, X. X.; Zheng, X. M. Temperature-programmed desorption study of NO and CO2 over CeO2 and ZrO2. Appl. Surf. Sci. 1997, 115, 185–189.

49

Appel, L. G.; Eon, J. G.; Schmal, M. The CO2–CeO2 interaction and its role in the CeO2 reactivity. Catal. Lett. 1998, 56, 199–202.

50

Aneggi, E.; de Leitenburg, C.; Dolcetti, G.; Trovarelli, A. Promotion effect of surface lanthanum in soot oxidation over ceria-based catalysts. Top Catal. 2007, 42, 319–322.

51

Li, K. Z.; Wang, H.; Wei, Y. G. Syngas generation from methane using a chemical-looping concept: A review of oxygen carriers. J. Chem. 2013, 2013, 294817.

52

Otsuka, K.; Wang, Y.; Sunada, E.; Yamanaka, I. Direct partial oxidation of methane to synthesis gas by cerium oxide. J. Catal. 1998, 175, 152–160.

53

Wei, J. M.; Iglesia, E. Isotopic and kinetic assessment of the mechanism of methane reforming and decomposition reactions on supported iridium catalysts. Phys. Chem. Chem. Phys. 2004, 6, 3754–3759.

54

Wei, J. M.; Iglesia, E. Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals. J. Phys. Chem. B 2004, 108, 4094–4103.

55

Pakhare, D.; Schwartz, V.; Abdelsayed, V.; Haynes, D.; Shekhawat, D.; Poston, J.; Spivey, J. Kinetic and mechanistic study of dry (CO2) reforming of methane over Rh-substituted La2Zr2O7 pyrochlores. J. Catal. 2014, 316, 78–92.

56

Múnera, J. F.; Cornaglia, L. M.; Cesar, D. V.; Schmal, M.; Lombardo, E. A. Kinetic studies of the dry reforming of methane over the Rh/La2O3-SiO2 catalyst. Ind. Eng. Chem. Res. 2007, 46, 7543–7549.

57

Solymosi, F.; Kutsán, G.; Erdöhelyi, A. Catalytic reaction of CH4 with CO2 over alumina-supported Pt metals. Catal. Lett. 1991, 11, 149–156.

58

Xu, L. L.; Zhang, J.; Wang, F. G.; Yuan, K. D.; Wang, L. J.; Wu, K.; Xu, G. Q.; Chen, W. One-step synthesis of ordered mesoporous CoAl2O4 spinel-based metal oxides for CO2 reforming of CH4. RSC Adv. 2015, 5, 48256–48268.

59

Wang, R.; Liu, X. B.; Chen, Y. X.; Li, W. Z.; Xu, H. Y. Effect of metal-support interaction on coking resistance of Rh-based catalysts in CH4/CO2 reforming. Chin. J. Catal. 2007, 28, 865–869.

File
nr-10-2-364_ESM.pdf (510.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 July 2016
Revised: 12 September 2016
Accepted: 23 September 2016
Published: 07 November 2016
Issue date: February 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The authors acknowledge the financial supports from National Natural Science Foundation of China (Nos. 21503142 and 21503113), Singapore National Research Foundation CREATE-SPURc program (No. R-143-001- 205-592), Singapore MOE Tier II (No. R143-000-542-112), and Academia-Industry Collaborative Innovation Foundation from Jiangsu Science and Technology Department (No. BY2014139).

Return