Journal Home > Volume 10 , Issue 3

Various approaches have been proposed for point-of-care diagnostics, and in particular, optical detection is preferred because it is relatively simple and fast. At the same time, field-effect transistor (FET)-based biosensors have attracted great attention because they can provide highly sensitive and label-free detection. In this work, we present highly sensitive, epidermal skin-type point-of-care devices with system-level integration of flexible MoS2 FET biosensors, read-out circuits, and light-emitting diode (LEDs) that enable real-time detection of prostate cancer antigens (PSA). Regardless of the physical forms or mechanical stress conditions, our proposed high-performance MoS2 biosensors can detect a PSA concentration of 1 pg·mL-1 without specific surface treatment for anti-PSA immobilization on the MoS2 surface on which we characterize and confirm physisorption of anti-PSA using Kelvin probe force microscopy (KPFM) and tapping-mode atomic force microscopy (tm-AFM). Furthermore, current modulation induced by the binding process was stably maintained for longer than 2-3 min. The results indicate that flexible MoS2-based FET biosensors have great potential for point-of-care diagnostics for prostate cancer as well as other biomarkers.


menu
Abstract
Full text
Outline
About this article

Real-time electrical detection of epidermal skin MoS2 biosensor for point-of-care diagnostics

Show Author's information Geonwook Yoo1,§Heekyeong Park2,§Minjung Kim2,§Won Geun Song2Seokhwan Jeong2Min Hyung Kim3Hyungbeen Lee3Sang Woo Lee3Young Ki Hong2Min Goo Lee4Sungho Lee4( )Sunkook Kim2( )
School of Electronic Engineering Soongsil University Seoul 06978 Republic of Korea
Multi-Functional Nano/Bio Electronics Lab. Kyung Hee University Gyeonggi 17104 Republic of Korea
Department of Biomedical Engineering Yonsei University Wonju 26493 Republic of Korea
Korea Electronics Technology InstituteGyeonggi 13488 Republic of Korea

§ These authors contributed equally to this work.

Abstract

Various approaches have been proposed for point-of-care diagnostics, and in particular, optical detection is preferred because it is relatively simple and fast. At the same time, field-effect transistor (FET)-based biosensors have attracted great attention because they can provide highly sensitive and label-free detection. In this work, we present highly sensitive, epidermal skin-type point-of-care devices with system-level integration of flexible MoS2 FET biosensors, read-out circuits, and light-emitting diode (LEDs) that enable real-time detection of prostate cancer antigens (PSA). Regardless of the physical forms or mechanical stress conditions, our proposed high-performance MoS2 biosensors can detect a PSA concentration of 1 pg·mL-1 without specific surface treatment for anti-PSA immobilization on the MoS2 surface on which we characterize and confirm physisorption of anti-PSA using Kelvin probe force microscopy (KPFM) and tapping-mode atomic force microscopy (tm-AFM). Furthermore, current modulation induced by the binding process was stably maintained for longer than 2-3 min. The results indicate that flexible MoS2-based FET biosensors have great potential for point-of-care diagnostics for prostate cancer as well as other biomarkers.

Keywords: MoS2, real-time, point-of-care diagnostics, biosensor, epidermal skin biomarker

References(31)

1

Özen, H.; Sözen, S. PSA isoforms in prostate cancer detection. Eur. Urol. Suppl. 2006, 5, 495-499.

2

Barbosa, A. I.; Gehlot, P.; Sidapra, K.; Edwards, A. D.; Reis, N. M. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens. Bioelectron. 2015, 70, 5-14.

3

Taneja, S. S. Imaging in the diagnosis and management of prostate cancer. Rev. Urol. 2004, 6, 101-113.

4

Raja, J.; Ramachandran, N.; Munneke, G.; Patel, U. Current status of transrectal ultrasound-guided prostate biopsy in the diagnosis of prostate cancer. Clin. Radiol. 2006, 61, 142-153.

5

Hricak, H.; Choyke, P. L.; Eberhardt, S. C.; Leibel, S. A.; Scardino, P. T. Imaging prostate cancer: A multidisciplinary perspective. Radiology 2007, 243, 28-53.

6

Yacoub, J. H.; Verma, S.; Moulton, J. S.; Eggener, S.; Oto, A. Imaging-guided prostate biopsy: Conventional and emerging techniques. Radiographics 2012, 32, 819-837.

7

von Lode, P. Point-of-care immunotesting: Approaching the analytical performance of central laboratory methods. Clin. Biochem. 2005, 38, 591-606.

8

Wang, J. Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosens. Bioelectron. 2006, 21, 1887-1892.

9

Oh, S. W.; Kim, Y. M.; Kim, H. J.; Kim, S. J.; Cho, J. S.; Choi, E. Y. Point-of-care fluorescence immunoassay for prostate specific antigen. Clin. Chim. Acta 2009, 406, 18-22.

10

Johnson, E. D.; Kotowski, T. M. Detection of prostate specific antigen by ELISA. J. Forensic Sci. 1993, 38, 250-258.

11

Healy, D. A.; Hayes, C. J.; Leonard, P.; McKenna, L.; O'Kennedy, R. Biosensor developments: Application to prostate-specific antigen detection. Trends Biotechnol. 2007, 25, 125-131.

12

Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294-1301.

13

Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289-1292.

14

Lee, K.; Nair, P. R.; Scott, A.; Alam, M. A.; Janes, D. B. Device considerations for development of conductance-based biosensors. J. Appl. Phys. 2009, 105, 102046.

15

Yang, W. R.; Ratinac, K. R.; Ringer, S. P.; Thordarson, P.; Gooding, J. J.; Braet, F. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem., Int. Ed. 2010, 49, 2114-2138.

16

Kim, S.; Ju, S.; Back, J. H.; Xuan, Y.; Ye, P. D.; Shim, M.; Janes, D. B.; Mohammadi, S. Fully transparent thin-film transistors based on aligned carbon nanotube arrays and indium tin oxide electrodes. Adv. Mater. 2009, 21, 564-568.

17

Kim, S.; Kim, S.; Park, J.; Ju, S.; Mohammadi, S. Fully transparent pixel circuits driven by random network carbon nanotube transistor circuitry. ACS Nano 2010, 4, 2994-2998.

18

Sarkar, D.; Liu, W.; Xie, X. J.; Anselmo, A. C.; Mitragotri, S.; Banerjee, K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano. 2014, 8, 3992-4003.

19

Wang, L.; Wang, Y.; Wong, J. I.; Palacios, T.; Kong, J.; Yang, H. Y. Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small 2014, 10, 1101-1105.

20

Lee, J.; Dak, P.; Lee, Y.; Park, H.; Choi, W.; Alam, M. A.; Kim, S. Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci. Rep. 2014, 4, 7352.

21

Kalantar-Zadeh, K.; Ou, J. Z. Biosensors based on two-dimensional MoS2. ACS Sens. 2016, 1, 5-16.

22

Jung, C.; Kim, S. M.; Moon, H.; Han, G.; Kwon, J.; Hong, Y. K.; Omkaram, I.; Yoon, Y.; Kim, S.; Park, J. Highly crystalline CVD-grown multilayer MoSe2 thin film transistor for fast photodetector. Sci. Rep. 2015, 5, 15313.

23

Kim, S.; Konar, A.; Hwang,W.-S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo,J.-B.; Choi,J.-Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.

24

Costantino, H. R.; Griebenow, K.; Langer, R.; Klibanov, A. M. On the pH memory of lyophilized compounds containing protein functional groups. Biotechnol. Bioeng. 1997, 53, 345-348.

DOI
25

Meyers, R. A. Molecular Biology and Biotechnology: A Comprehensive Desk Reference; Wiley-VCH: New York, 1995.

26

Okamoto, K.; Yoshimoto, K.; Sugawara, Y.; Morita, S. KPFM imaging of Si(1 1 1)53×53-Sb surface for atom distinction using NC-AFM. Appl. Surf. Sci. 2003, 210, 128-133.

27

Liscio, A.; Palermo, V.; Samorì, P. Probing local surface potential of quasi-one-dimensional systems: A KPFM study of P3HT nanofibers. Adv. Funct. Mater. 2008, 18, 907-914.

28

Bieletzki, M.; Hynninen, T.; Soini, T. M.; Pivetta, M.; Henry, C. R.; Foster, A. S.; Esch, F.; Barth, C.; Heiz, U. Topography and work function measurements of thin MgO(001) films on Ag(001) by Nc-AFM and KPFM. Phys. Chem. Chem. Phys. 2010, 12, 3203-3209.

29

Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 2013, 102, 42104.

30

Song, W. G.; Kwon,H.-J.; Park, J.; Yeo, J.; Kim, M.; Park, S.; Yun, S.; Kyung,K.-U.; Grigoropoulos, C. P.; Kim, S. et al. High-performance flexible multilayer MoS2 transistors on solution-based polyimide substrates. Adv. Funct. Mater. 2016, 26, 2426-2434.

31

Hao, G. L.; Huang, Z. Y.; Liu, Y. D.; Qi, X.; Ren, L.; Peng, X. Y.; Yang, L. W.; Wei, X. L.; Zhong, J. X. Electrostatic properties of few-layer MoS2 films. AIP Adv. 2013, 3, 42125.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 June 2016
Revised: 18 August 2016
Accepted: 14 September 2016
Published: 28 October 2016
Issue date: March 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This research was supported in part by the National Research Foundation of Korea (Nos. NRF-2014M3A9 D7070732, and NRF-2015R1A5A1037548). This research was supported by the Commercializations Promotion Agency for R&D Outcomes (COMPA) funded by the Ministry of Science, ICT and Future Planning (MISP).

Return