Journal Home > Volume 10 , Issue 1

Heterogeneous complementary inverters composed of bi-layer molybdenum disulfide (MoS2) and single-walled carbon-nanotube (SWCNT) networks are designed, and n-type MoS2/p-type SWCNT inverters are fabricated with a back- gated structure. Field-effect transistors (FETs) based on the MoS2 and SWCNT networks show high electrical performance with large ON/OFF ratios up to 106 and 105 for MoS2 and SWCNT, respectively. The MoS2/SWCNT complementary inverters exhibit Vin-Vout signal matching and achieve excellent performances with a high peak voltage gain of 15, a low static-power consumption of a few nanowatts, and a high noise margin of 0.45VDD, which are suitable for future logic-circuit applications. The inverter performances are affected by the channel width-to-length ratios (W/L) of the MoS2-FETs and SWCNT-FETs. Therefore, W/L should be optimized to achieve a tradeoff between the gain and the power consumption.


menu
Abstract
Full text
Outline
About this article

High-performance heterogeneous complementary inverters based on n-channel MoS2 and p-channel SWCNT transistors

Show Author's information Zhixin Li1Dan Xie1( )Ruixuan Dai1Jianlong Xu2Yilin Sun1Mengxing Sun1Cheng Zhang1Xian Li1
Institute of Microelectronics,Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University,Beijing,100084,China;
Institute of Functional Nano and Soft Materials (FUNSOM),Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University,Suzhou,215123,China;

Abstract

Heterogeneous complementary inverters composed of bi-layer molybdenum disulfide (MoS2) and single-walled carbon-nanotube (SWCNT) networks are designed, and n-type MoS2/p-type SWCNT inverters are fabricated with a back- gated structure. Field-effect transistors (FETs) based on the MoS2 and SWCNT networks show high electrical performance with large ON/OFF ratios up to 106 and 105 for MoS2 and SWCNT, respectively. The MoS2/SWCNT complementary inverters exhibit Vin-Vout signal matching and achieve excellent performances with a high peak voltage gain of 15, a low static-power consumption of a few nanowatts, and a high noise margin of 0.45VDD, which are suitable for future logic-circuit applications. The inverter performances are affected by the channel width-to-length ratios (W/L) of the MoS2-FETs and SWCNT-FETs. Therefore, W/L should be optimized to achieve a tradeoff between the gain and the power consumption.

Keywords: MoS2, electrical properties, heterogeneous inverter, single-walled carbon-nanotube (SWCNT), high voltage gain

References(24)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

2

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two- dimensional transition metal dichalcogenides. Nat. Nano­technol. 2012, 7, 699-712.

3

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two- dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451-10453.

4

Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351-355.

5

Ferain, I.; Colinge, C. A.; Colinge, J. P. Multigate transistors as the future of classical metal-oxide-semiconductor field- effect transistors. Nature 2011, 479, 310-316.

6

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: Anew direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

7

Kam, K. K.; Parkinson, B. A. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J. Phys. Chem. 1982, 86, 463-467.

8

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis. A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

9

Radisavljevic, B.; Whitwick, M. B.; Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934-9938.

10

Huang, J.; Somu, S.; Busnaina, A. A molybdenum disulfide/ carbon nanotube heterogeneous complementary inverter. Nanotechnology 2012, 23, 335203.

11

Cho, A. J.; Park, K. C.; Kwon, J. Y. A high-performance complementary inverter based on transition metal dichalcogenide field-effect transistors. Nanoscale Res. Lett. 2015, 10, 115.

12

Jeon, P. J.; Kim, J. S.; Lim, J. Y.; Cho, Y.; Pezeshki, A.; Lee, H. S.; Yu, S.; Min, S. W.; Im, S. Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits. ACS Appl. Mater. Interfaces 2015, 7, 22333-22340.

13

Lee, H. S.; Shin, J. M.; Jeon, P. J.; Lee, J.; Kim, J. S.; Hwang, H. C.; Park, E.; Yoon, W.; Ju, S. Y.; Im, S. Few- layer MoS2-organic thin-film hybrid complementary inverter pixel fabricated on a glass substrate. Small 2015, 11, 2132- 2138.

14

Su, Y.; Kshirsagar, C. U.; Robbins, M. C.; Haratipour, N.; Koester, S. J. Symmetric complementary logic inverter using integrated black phosphorus and MoS2 transistors. 2D Mater. 2016, 3, 011006.

15

Pezeshki, A.; Shokouh, S. H. H.; Jeon, P. J.; Shackery, I.; Kim, J. S.; Oh, I. K.; Jun, S. C.; Kim, H.; Im, S. Static and dynamic performance of complementary inverters based on nanosheet α-MoTe2 p-channel and MoS2 n-channel transistors. ACS Nano 2016, 10, 1118-1125.

16

Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 2001, 79, 1172-1174.

17

Dürkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35-39.

18

Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654-657.

19

Hu, L. B.; Hecht, D. S.; Grüner, G. Carbon nanotube thin films: Fabrication, properties, and applications. Chem. Rev. 2010, 110, 5790-5844.

20

Lau, P. H.; Takei, K.; Wang, C.; Ju, Y.; Kim, J.; Yu, Z. B.; Takahashi, T.; Cho, G.; Javey, A. Fully printed, high per­formance carbon nanotube thin-film transistors on flexible substrates. Nano Lett. 2013, 13, 3864-3869.

21

Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751-758.

22

Benameur, M. M.; Radisavljevic, B.; Héron, J. S.; Sahoo1, S.; Berger, H.; Kis, A. Visibility of dichalcogenide nanolayers. Nanotechnology 2011, 22, 125706.

23

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385-1390.

24

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 June 2016
Revised: 11 September 2016
Accepted: 12 September 2016
Published: 04 October 2016
Issue date: January 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51672154, 51372130, and 61401251), Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (No. KF201517), and Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (No. KFJJ201402).

Return