Journal Home > Volume 10 , Issue 1

Lithium-ion batteries (LIBs) are currently recognized as one of the most popular power sources available. To construct advanced LIBs exhibiting long-term endurance, great attention has been paid to enhancing their poor cycle stabilities. As the performance of LIBs is dependent on the electrode materials employed, the most promising approach to improve their life span is the design of novel electrode materials. We herein describe the rational design of a three-dimensional (3D) porous MnO/C-N nanoarchitecture as an anode material for long cycle life LIBs based on their preparation from inexpensive, renewable, and abundant rapeseed pollen (R-pollen) via a facile immersion-annealing route. Remarkably, the as-prepared MnO/C-N with its optimized 3D nanostructure exhibited a high specific capacity (756.5 mAh·g-1 at a rate of 100 mA·g-1), long life span (specific discharge capacity of 513.0 mAh·g-1, ~95.16% of the initial reversible capacity, after 400 cycles at 300 mA·g-1), and good rate capability. This material therefore represents a promising alternative candidate for the high-performance anode of next-generation LIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Biotemplated synthesis of three-dimensional porous MnO/C-N nanocomposites from renewable rapeseed pollen: An anode material for lithium-ion batteries

Show Author's information Li-Feng Chen1,§Sheng-Xiang Ma1,§Shu Lu1Yue Feng1Jia Zhang1Sen Xin2Shu-Hong Yu1( )
Division of Nanomaterials & Chemistry,Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS Center for Excellence in Nanoscience, Department of Chemistry, Department of Materials Science & Engineering, University of Science and Technology of China,Hefei,230026,China;
Anhui Key Laboratory of Controllable Chemical Reaction and Material Chemical Engineering,School of Chemical Engineering, Hefei University of Technology,Hefei,230009,China;

§ These authors contributed equally to this work.

Abstract

Lithium-ion batteries (LIBs) are currently recognized as one of the most popular power sources available. To construct advanced LIBs exhibiting long-term endurance, great attention has been paid to enhancing their poor cycle stabilities. As the performance of LIBs is dependent on the electrode materials employed, the most promising approach to improve their life span is the design of novel electrode materials. We herein describe the rational design of a three-dimensional (3D) porous MnO/C-N nanoarchitecture as an anode material for long cycle life LIBs based on their preparation from inexpensive, renewable, and abundant rapeseed pollen (R-pollen) via a facile immersion-annealing route. Remarkably, the as-prepared MnO/C-N with its optimized 3D nanostructure exhibited a high specific capacity (756.5 mAh·g-1 at a rate of 100 mA·g-1), long life span (specific discharge capacity of 513.0 mAh·g-1, ~95.16% of the initial reversible capacity, after 400 cycles at 300 mA·g-1), and good rate capability. This material therefore represents a promising alternative candidate for the high-performance anode of next-generation LIBs.

Keywords: lithium-ion battery, long cycle life, 3D porous MnO/C-N nanocomposite, rapeseed pollen, renewable biomass

References(56)

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

2

Chen, Z.; Wang, C.; Lopez, J.; Lu, Z. D.; Cui, Y.; Bao, Z. N. High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder. Adv. Energy Mater. 2015, 5, 1401826.

3

Zhao, D. D.; Wang, L.; Yu, P.; Zhao, L.; Tian, C. G.; Zhou, W.; Zhang, L.; Fu, H. G. From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries. Nano Res. 2015, 8, 2998–3010.

4

Armstrong, M. J.; O'Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1–62.

5

Xu, K. Q.; Ben, L. B.; Li, H.; Huang, X. J. Silicon-based nanosheets synthesized by a topochemical reaction for use as anodes for lithium ion batteries. Nano Res. 2015, 8, 2654–2662.

6

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

7

Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.

8

Lyu, Z. Y.; Yang, L. J.; Xu, D.; Zhao, J.; Lai, H. W.; Jiang, Y. F.; Wu, Q.; Li, Y.; Wang, X. Z.; Hu, Z. Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries. Nano Res. 2015, 8, 3535–3543.

9

Chen, W. M.; Qie, L.; Shen, Y.; Sun, Y. M.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H. Superior lithium storage performance in nanoscaled MnO promoted by N-doped carbon webs. Nano Energy 2013, 2, 412–418.

10

Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

11

Wang, H. L.; Cui, L. F.; Yang, Y.; Sanchez Casalongue, H.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980.

12

Xiao, X. L.; Liu, X. F.; Zhao, H.; Chen, D. F.; Liu, F. Z.; Xiang, J. H.; Hu, Z. B.; Li, Y. D. Facile shape control of Co3O4 and the effect of the crystal plane on electrochemical performance. Adv. Mater. 2012, 24, 5762–5766.

13

Sun, Y. M.; Hu, X. L.; Luo, W.; Xia, F. F.; Huang, Y. H. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 2013, 23, 2436–2444.

14

Zhou, W. W.; Cheng, C. W.; Liu, J. P.; Tay, Y. Y.; Jiang, J.; Jia, X. T.; Zhang, J. X.; Gong, H.; Hng, H. H.; Yu, T. et al. Epitaxial growth of branched a-Fe2O3/SnO2 nanoheterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 2011, 21, 2439–2445.

15

Shi, Y. F.; Guo, B. K.; Corr, S. A.; Shi, Q. H.; Hu, Y. S.; Heier, K. R.; Chen, L. Q.; Seshadri, R.; Stucky, G. D. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett. 2009, 9, 4215–4220.

16

Chen, Y.; Song, B. H.; Li, M.; Lu, L.; Xue, J. M. Fe3O4 nanoparticles embedded in uniform mesoporous carbon spheres for superior high-rate battery applications. Adv. Funct. Mater. 2014, 24, 319–326.

17

Hou, X. H.; Zhang, W. L.; Wang, X. Y.; Hu, S. J.; Li, C. M. Soft template PEG-assisted synthesis of Fe3O4@C nanocomposite as superior anode materials for lithium-ion batteries. Sci. Bull. 2015, 60, 884–891.

18

Song, L. X.; Yang, S. J.; Wei, W.; Qu, P.; Xu, M. T.; Liu, Y. Hierarchical SnO2 nanoflowers assembled by atomic thickness nanosheets as anode material for lithium ion battery. Sci. Bull. 2015, 60, 892–895.

19

Wang, H. G.; Zhang, X. B. Designing multi-shelled metal oxides: Towards high energy-density lithium-ion batteries. Sci. China Mater. 2016, 59, 521–522.

20

Lian, C.; Xiao, X. L.; Chen, Z.; Liu, Y. X.; Zhao, E. Y.; Wang, D. S.; Chen, C. Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries. Nano Res. 2016, 9, 435–441.

21

Li, L.; Kovalchuk, A.; Tour, J. M. SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability. Nano Res. 2014, 7, 1319–1326.

22

Choi, S. H.; Lee, J. K.; Kang, Y. C. Three-dimensional porous graphene-metal oxide composite microspheres: Preparation and application in Li-ion batteries. Nano Res. 2015, 8, 1584–1594.

23

Fei, H. L.; Peng, Z. W.; Li, L.; Yang, Y.; Lu, W.; Samuel, E. L. G.; Fan, X. J.; Tour, J. M. Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Res. 2014, 7, 502–510.

24

Jiao, J. Q.; Qiu, W. D.; Tang, J. G.; Chen, L. P.; Jing, L. Y. Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries. Nano Res. 2016, 9, 1256–1266.

25

Kim, W. S.; Hwa, Y.; Kim, H. C.; Choi, J. H.; Sohn, H. J.; Hong, S. H. SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res. 2014, 7, 1128–1136.

26

Xia, Y.; Xiao, Z.; Dou, X.; Huang, H.; Lu, X. H.; Yan, R. J.; Gan, Y. P.; Zhu, W. J.; Tu, J. P.; Zhang, W. K. et al. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries. ACS Nano 2013, 7, 7083–7092.

27

Sun, B.; Chen, Z. X.; Kim, H. S.; Ahn, H. J.; Wang, G. X. MnO/C core–shell nanorods as high capacity anode materials for lithium-ion batteries. J. Power Sources 2011, 196, 3346–3349.

28

Zhong, K. F.; Zhang, B.; Luo, S. H.; Wen, W.; Li, H.; Huang, X. J.; Chen, L. Q. Investigation on porous MnO microsphere anode for lithium ion batteries. J. Power Sources 2011, 196, 6802–6808.

29

Zhang, K.; Han, X. P.; Hu, Z.; Zhang, X. L.; Tao, Z. L.; Chen, J. Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 2015, 44, 699–728.

30

Zhong, K. F.; Xia, X.; Zhang, B.; Li, H.; Wang, Z. X.; Chen, L. Q. MnO powder as anode active materials for lithium ion batteries. J. Power Sources 2010, 195, 3300–3308.

31

Li, X. W.; Xiong, S. L.; Li, J. F.; Liang, X.; Wang, J. Z.; Bai, J.; Qian, Y. T. MnO@carbon core–shell nanowires as stable high-performance anodes for lithium-ion batteries. Chem. —Eur. J. 2013, 19, 11310–11319.

32

Hu, H.; Cheng, H. Y.; Liu, Z. F.; Yu, Y. Facile synthesis of carbon spheres with uniformly dispersed MnO nanoparticles for lithium ion battery anode. Electrochim. Acta 2015, 152, 44–52.

33

Liu, H.; Li, Z. H.; Liang, Y. R.; Fu, R. W.; Wu, D. C. Facile synthesis of MnO multi-core@nitrogen-doped carbon shell nanoparticles for high performance lithium-ion battery anodes. Carbon 2015, 84, 419–425.

34

Wang, S. B.; Xing, Y. L.; Xu, H. Z.; Zhang, S. C. MnO nanoparticles interdispersed in 3D porous carbon framework for high performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 12713–12718.

35

Bergmann, A.; Zaharieva, I.; Dau, H.; Strasser, P. Electrochemical water splitting by layered and 3D crosslinked manganese oxides: Correlating structural motifs and catalytic activity. Energy Environ. Sci. 2013, 6, 2745–2755.

36

Wang, H. L.; Xu, Z. W.; Li, Z.; Cui, K.; Ding, J.; Kohandehghan, A.; Tan, X. H.; Zahiri, B.; Olsen, B. C.; Holt, C. M. B. et al. Hybrid device employing threedimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide. Nano Lett. 2014, 14, 1987–1994.

37

Yang, K.; Wu, D.; Ye, X. Q.; Liu, D. H.; Chen, J. C.; Sun, P. L. Characterization of chemical composition of bee pollen in China. J. Agric. Food Chem. 2013, 61, 708–718.

38

Luo, W.; Hu, X. L.; Sun, Y. M.; Huang, Y. H. Controlled synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties. ACS Appl. Mater. Interfaces 2013, 5, 1997–2003.

39

Zhang, K. J.; Han, P. X.; Gu, L.; Zhang, L. X.; Liu, Z. H.; Kong, Q. S.; Zhang, C. J.; Dong, S. M.; Zhang, Z. Y.; Yao, J. H. et al. Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 658–664.

40

Chen, L. F.; Zhang, X. D.; Liang, H. W.; Kong, M. G.; Guan, Q. F.; Chen, P.; Wu, Z. Y.; Yu, S. H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 2012, 6, 7092–7102.

41

Zhang, X.; Xing, Z.; Wang, L. L.; Zhu, Y. C.; Li, Q. W.; Liang, J. W.; Yu, Y.; Huang, T.; Tang, K. B.; Qian, Y. T. et al. Synthesis of MnO@C core–shell nanoplates with controllable shell thickness and their electrochemical performance for lithium-ion batteries. J. Mater. Chem. 2012, 22, 17864–17869.

42

Liu, S. Y.; Xie, J.; Zheng, Y. X.; Cao, G. S.; Zhu, T. J.; Zhao, X. B. Nanocrystal manganese oxide (Mn3O4, MnO) anchored on graphite nanosheet with improved electrochemical Li-storage properties. Electrochim. Acta 2012, 66, 271–278.

43

Xu, S. D.; Zhu, Y. B.; Zhuang, Q. C.; Wu, C. Hydrothermal synthesis of manganese oxides/carbon nanotubes composites as anode materials for lithium ion batteries. Mater. Res. Bull. 2013, 48, 3479–3484.

44

Xiao, Y.; Wang, X.; Wang, W.; Zhao, D.; Cao, M. H. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode. ACS Appl. Mater. Interfaces 2014, 6, 2051–2058.

45

Chen, L. F.; Huang, Z. H.; Liang, H. W.; Yao, W. T.; Yu, Z. Y.; Yu, S. H. Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ. Sci. 2013, 6, 3331–3338.

46

Wang, H.; Hu, P. F.; Yang, J.; Gong, G. M.; Guo, L.; Chen, X. D. Renewable-juglone-based high-performance sodium-ion batteries. Adv. Mater. 2015, 27, 2348–2354.

47

Xu, G. Y.; Han, J. P.; Ding, B.; Nie, P.; Pan, J.; Dou, H.; Li, H. S.; Zhang, X. G. Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem. 2015, 17, 1668–1674.

48

Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. Microwave-assisted synthesis of layer-by-layer ultra-large and thin NiAl-LDH/RGO nanocomposites and their excellent performance as electrodes. Sci. China Mater. 2015, 58, 944–952.

49

Sun, Y. M.; Hu, X. L.; Luo, W.; Huang, Y. H. Selfassembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. ACS Nano 2011, 5, 7100–7107.

50

Liu, B.; Hu, X. L.; Xu, H. H.; Luo, W.; Sun, Y. M.; Huang, Y. H. Encapsulation of MnO nanocrystals in electrospun carbon nanofibers as high-performance anode materials for lithium-ion batteries. Sci. Rep. 2014, 4, 4229.

51

Poizot, P.; Laruelle, S.; Grugeon, S.; Tarascon, J. M. Rationalization of the low-potential reactivity of 3d-metalbased inorganic compounds toward Li. J. Electrochem. Soc. 2002, 149, A1212–A1217.

52

Guo, J. C.; Liu, Q.; Wang, C. S.; Zachariah, M. R. Interdispersed amorphous MnOx-carbon nanocomposites with superior electrochemical performance as lithium-storage material. Adv. Funct. Mater. 2012, 22, 803–811.

53

Wang, X. L.; Han, W. Q.; Chen, H. Y.; Bai, J. M.; Tyson, T. A.; Yu, X. Q.; Wang, X. J.; Yang, X. Q. Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life. J. Am. Chem. Soc. 2011, 133, 20692–20695.

54

Varzi, A.; Bresser, D.; von Zamory, J.; Müller, F.; Passerini, S. ZnFe2O4-C/LiFePO4-CNT: A novel high-power lithium-ion battery with excellent cycling performance. Adv. Energy Mater. 2014, 4, 1400054.

55

Liang, J. W.; Li, X. N.; Zhu, Y. C.; Guo, C.; Qian, Y. T. Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries. Nano Res. 2015, 8, 1497–1504.

56

Jiang, H.; Hu, Y. J.; Guo, S. J.; Yan, C. Y.; Lee, P. S.; Li, C. Z. Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 2014, 8, 6038–6046.

File
nr-10-1-1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 July 2016
Revised: 03 September 2016
Accepted: 06 September 2016
Published: 15 November 2016
Issue date: January 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 21431006 and 21503207), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 21521001), the National Basic Research Program of China (Nos. 2014CB931800, 2013CB933900), and Scientific Research Grant of Hefei Science Center of Chinese Academy of Sciences (Nos. 2015HSC-UE007 and 2015SRG-HSC038), the China Postdoctoral Science Foundation (Nos. 2015T80662 and 2014M550346), and the Fundamental Research Funds for the Central Universities (No. WK2060190047). The authors also thank the help provided by Dr. Yue Lin and Prof. Yan-Wei Ding in Instruments' Center for Physical Science at the University of Science and Technology of China.

Return