Journal Home > Volume 10 , Issue 1

Lithium iron silicate (Li2FeSiO4) is capable of affording a much higher capacity than conventional cathodes, and thus, it shows great promise for high-energy battery applications. However, its capacity has often been adversely affected by poor reaction activity due to the extremely low electronic and ionic conductivity of silicates. Here, we for the first time report on a rational engineering strategy towards a highly active Li2FeSiO4 by designing a carbon nanotube (CNT) directed three-dimensional (3D) porous Li2FeSiO4 composite. As the CNT framework enables rapid electron transport, and the rich pores allow efficient electrolyte penetration, this unique 3D Li2FeSiO4-CNT composite exhibits a high capacity of 214 mAh·g−1 and retains 96% of this value over 40 cycles, thus, outstripping many previously reported Li2FeSiO4-based materials. Kinetic analysis reveals a high Li+ diffusivity due to coupling of the migration of electrons and ions. This research highlights the potential for engineering 3D porous structure to construct highly efficient electrodes for battery applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Carbon nanotube directed three-dimensional porous Li2FeSiO4 composite for lithium batteries

Show Author's information Wencong Wang1Haichen Liang1Ling Zhang1Serguei V. Savilov2Jiangfeng Ni1( )Liang Li1( )
College of Physics,Optoelectronics and Energy, Center for Energy Conversion Materials & Physics (CECMP), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University,Suzhou,215006,China;
Chemistry Department,M.V. Lomonosov Moscow State University,Moscow,119991,Russia;

Abstract

Lithium iron silicate (Li2FeSiO4) is capable of affording a much higher capacity than conventional cathodes, and thus, it shows great promise for high-energy battery applications. However, its capacity has often been adversely affected by poor reaction activity due to the extremely low electronic and ionic conductivity of silicates. Here, we for the first time report on a rational engineering strategy towards a highly active Li2FeSiO4 by designing a carbon nanotube (CNT) directed three-dimensional (3D) porous Li2FeSiO4 composite. As the CNT framework enables rapid electron transport, and the rich pores allow efficient electrolyte penetration, this unique 3D Li2FeSiO4-CNT composite exhibits a high capacity of 214 mAh·g−1 and retains 96% of this value over 40 cycles, thus, outstripping many previously reported Li2FeSiO4-based materials. Kinetic analysis reveals a high Li+ diffusivity due to coupling of the migration of electrons and ions. This research highlights the potential for engineering 3D porous structure to construct highly efficient electrodes for battery applications.

Keywords: electrochemical performance, cathode, lithium battery, lithium iron silicate

References(41)

1

Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.

2

Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 2014, 114, 11414–11443.

3

Nyten, A.; Abouimrane, A.; Armand, M.; Gustafsson, T.; Thomas, J. O. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem. Commun. 2005, 7, 156–160.

4

Islam, M. S.; Dominko, R.; Masquelier, C.; Sirisopanaporn, C.; Armstrong, A. R.; Bruce, P. G. Silicate cathodes for lithium batteries: Alternatives to phosphates? J. Mater. Chem. 2011, 21, 9811–9818.

5

Sirisopanaporn, C.; Dominko, R.; Masquelier, C.; Armstrong, A. R.; Mali, G.; Bruce, P. G. Polymorphism in Li2(Fe, Mn)SiO4: A combined diffraction and NMR study. J. Mater. Chem. 2011, 21, 17823–17831.

6

Dominko, R. Li2MSiO4 (M = Fe and/or Mn) cathode materials. J. Power Sources 2008, 184, 462–468.

7

Armstrong, A. R.; Kuganathan, N.; Islam, M. S.; Bruce, P. G. Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries. J. Am. Chem. Soc. 2011, 133, 13031–13035.

8

Lv, D. P.; Wen, W.; Huang, X. K.; Bai, J. Y.; Mi, J. X.; Wu, S. Q.; Yang, Y. A novel Li2FeSiO4/C composite: Synthesis, characterization and high storage capacity. J. Mater. Chem. 2011, 21, 9506–9512.

9

Zhang, L. -L.; Duan, S.; Yang, X. -L.; Peng, G.; Liang, G.; Huang, Y. -H.; Jiang, Y.; Ni, S. -B.; Li, M. Reduced graphene oxide modified Li2FeSiO4/C composite with enhanced elec­trochemical performance as cathode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 12304–12309.

10

Li, Y. S.; Cheng, X.; Zhang, Y. Achieving high capacity by vanadium substitution into Li2FeSiO4. J. Electrochem. Soc. 2012, 159, A69–A74.

11

Armand, M.; Arroyo y de Dompablo, M. E. Benefits of N for O substitution in polyoxoanionic electrode materials: A first principles investigation of the electrochemical properties of Li2FeSiO4−yNy (y = 0, 0.5, 1). J. Mater. Chem. 2011, 21, 10026–10034.

12

Gao, H. Y.; Hu, Z.; Zhang, K.; Cheng, F. Y.; Chen, J. Intergrown Li2FeSiO4∙LiFePO4-C nanocomposites as high- capacity cathode materials for lithium-ion batteries. Chem. Commun. 2013, 49, 3040–3042.

13

Rangappa, D.; Murukanahally, K. D.; Tomai, T.; Unemoto, A.; Honma, I. Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode. Nano Lett. 2012, 12, 1146–1151.

14

Chen, Z. X.; Qiu, S.; Cao, Y. L.; Qian, J. F.; Ai, X. P.; Xie, K.; Hong, X. B.; Yang, H. X. Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries. J. Mater. Chem. A 2013, 1, 4988–4992.

15

Zheng, Z. M.; Wang, Y.; Zhang, A.; Zhang, T. R.; Cheng, F. Y.; Tao, Z. L.; Chen, J. Porous Li2FeSiO4/C nanocomposite as the cathode material of lithium-ion batteries. J. Power Sources 2012, 198, 229–235.

16

Li, D. L.; Xie, R.; Tian, M.; Ma, S. L.; Gou, L.; Fan, X. Y.; Shi, Y. X.; Yong, H. -T. -H.; Hao, L. M. Improving high-rate performance of mesoporous Li2FeSiO4/Fe7SiO10/C nano­composite cathode with a mixed valence Fe7SiO10 nanocrystal. J. Mater. Chem. A 2014, 2, 4375–4383.

17

Xu, Y. M.; Shen, W.; Zhang, A. L.; Liu, H. M.; Ma, Z. F. Template-free hydrothermal synthesis of Li2FeSiO4 hollow spheres as cathode materials for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 12982–12990.

18

Zhang, L.; Ni, J. F.; Wang, W. C.; Guo, J.; Li, L. 3D porous hierarchical Li2FeSiO4/C for rechargeable lithium batteries. J. Mater. Chem. A 2015, 3, 11782–11786.

19

Zhang, C. F.; Chen, Z. X.; Guo, Z. P.; Lou, X. W. Additive- free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties. Energy Environ. Sci. 2013, 6, 974–978.

20

Chu, H. B.; Wei, L.; Cui, R. L.; Wang, J. Y.; Li, Y. Carbon nanotubes combined with inorganic nanomaterials: Pre­parations and applications. Coord. Chem. Rev. 2010, 254, 1117–1134.

21

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Cui, L. F.; Sanchez Casalongue, H.; Li, Y. G.; Hong, G. S.; Cui, Y.; Dai, H. J. LiMn1−xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew. Chem. 2011, 123, 7502–7506.

22

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Dai, H. J. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013–2036.

23

Wang, H. L.; Dai, H. J. Strongly coupled inorganic–nano- carbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113.

24

Li, P.; Wang, L. Y.; Wang, L.; Li, Y. D. Controlled synthesis and luminescence of semiconductor nanorods. Chem. —Eur. J. 2008, 14, 5951–5956.

25

Lin, F. -H.; Chen, W.; Liao, Y. -H.; Doong, R. -A.; Li, Y. D. Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures. Nano Res. 2011, 4, 1223–1232.

26

Zhang, L.; Ni, J. F.; Wang, W. C.; Li, L. A general approach towards carbon nanotube and iron oxide coaxial architecture and its lithium storage capability. J. Power Sources 2015, 298, 138–143.

27

Dominko, R.; Conte, D. E.; Hanzel, D.; Gaberscek, M.; Jamnik, J. Impact of synthesis conditions on the structure and performance of Li2FeSiO4. J. Power Sources 2008, 178, 842–847.

28

Zhang, P.; Zheng, Y.; Yu, S.; Wu, S. Q.; Wen, Y. H.; Zhu, Z. Z.; Yang, Y. Insights into electrochemical performance of Li2FeSiO4 from first-principles calculations. Electrochim. Acta 2013, 111, 172–178.

29

Masese, T.; Orikasa, Y.; Tassel, C.; Kim, J.; Minato, T.; Arai, H.; Mori, T.; Yamamoto, K.; Kobayashi, Y.; Kageyama, H. et al. Relationship between phase transition involving cationic exchange and charge–discharge rate in Li2FeSiO4. Chem. Mater. 2014, 26, 1380–1384.

30

Jiang, Y.; Tian, R. Y.; Liu, H. Q.; Chen, J. K.; Tan, X. H.; Zhang, L.; Liu, G. Y.; Wang, H. F.; Sun, L. F.; Chu, W. G. Synthesis and characterization of oriented linked LiFePO4 nanoparticles with fast electron and ion transport for high- power lithium-ion batteries. Nano Res. 2015, 8, 3803–3814.

31

Ni, J. F.; Zhao, Y.; Li, L.; Mai, L. Q. Ultrathin MoO2 nanosheets for superior lithium storage. Nano Energy 2015, 11, 129–135.

32

Su, D. W.; Ahn, H.; Wang, G. X. Ab initio calculations on Li-ion migration in Li2FeSiO4 cathode material with a P21 symmetry structure. Appl. Phys. Lett. 2011, 99, 141909.

33

Hu, L.; Yang, J. L.; Amiinu, I. S.; Kang, X. C.; Zhang, W.; Mu, S. C. Lithium storage properties of in situ synthesized Li2FeSiO4 and LiFeBO3 nanocomposites as advanced cathode materials for lithium ion batteries. J. Mater. Chem. A 2015, 3, 23368–23375.

34

Qiu, H. L.; Yue, H. J.; Zhang, T.; Ju, Y. M.; Zhang, Y. Q.; Guo, Z. D.; Wang, C. Z.; Chen, G.; Wei, Y. J.; Zhang, D. Enhanced electrochemical performance of Li2FeSiO4/C positive electrodes for lithium-ion batteries via yttrium doping. Electrochim. Acta 2016, 188, 636–644.

35

O'Neill, D.; Bowman, R. M.; Gregg, J. M. Dielectric enhancement and Maxwell–Wagner effects in ferroelectric superlattice structures. Appl. Phys. Lett. 2000, 77, 1520–1522.

36

Joy, L. K.; Sooraj, V.; Sajeev, U.; Nair, S. S.; Narayanan, T. N.; Sethulakshmi, N.; Ajayan, P. M.; Anantharaman, M. R. Large enhanced dielectric permittivity in polyaniline passivated core–shell nano magnetic iron oxide by plasma polymerization. Appl. Phys. Lett. 2014, 104, 121603.

37

Liu, H.; Li, C.; Zhang, H. P.; Fu, L. J.; Wu, Y. P.; Wu, H. Q. Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique. J. Power Sources 2006, 159, 717–720.

38

Ni, J. F.; Fu, S. D.; Wu, C.; Maier, J.; Yu, Y.; Li, L. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv. Mater. 2016, 28, 2259–2265.

39

Ni, J. F.; Fu, S. D.; Wu, C.; Zhao, Y.; Maier, J.; Yu, Y.; Li, L. Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering. Adv. Energy Mater. 2016, 6, 1502568.

40

Ni, J. F.; Zhao, Y.; Liu, T. T.; Zheng, H. H.; Gao, L. J.; Yan, C. L.; Li, L. Strongly coupled Bi2S3@CNT hybrids for robust lithium storage. Adv. Energy Mater. 2014, 4, 1400798.

41

Ni, J. F.; Li, Y. Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv. Energy Mater. 2016, 6, 1600278.

File
nr-10-1-229_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 June 2016
Revised: 01 September 2016
Accepted: 06 September 2016
Published: 04 October 2016
Issue date: January 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

We acknowledge the financial support of the National Natural Science Foundation of China (Nos. 51302181, 51372159, 51422206, and 51672182), the Thousand Youth Talents Plan, the Jiangsu Shuangchuang Plan, the Natural Science Foundation of Jiangsu Province (Nos. BK20151219 and BK20140009), the Jiangsu Undergra­duate Student Innovation and Entrepreneurship Project, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Russian Scientific Fund (No. 14-43-00072).

Return