Journal Home > Volume 10 , Issue 1

Single-component anode materials can barely satisfy the growing demand for next-generation Li-ion batteries with higher capacity and cyclability. Thus developing multi-component synergistic electrodes has become a critical issue. Herein, inspired by natural corn, a ternary hierarchical self-supported array design is proposed. Based on a sequential transformation route, Si/C-modified Co3O4 nanowire arrays are constructed on 3D Ni foams to form a binder-free integrated electrode. Specifically, an ionic liquid-assisted electrodeposition strategy is employed to prepare discrete ultrafine Si nanoparticles on nanoscale array substrates, which follow the Volmer–Weber island growth mode. In this corn-mimetic system, kernel-like Si nanoparticles and a husk-like carbon coating layer function as enhancing and protecting units, respectively, to improve the capacity and stability of the cobalt oxide basic unit. Taking advantage of a synergistic effect, the ternary nanoarray anode achieves a significant performance enhancement compared to pristine Co3O4, showing a special capacity as high as ~1, 000 mAh·g−1 at 100 mA·g−1. By extending this corn-mimetic hierarchical array design to other basic, enhancing, and protecting units, new ideas for constructing synergistic nano-architectures for energy conversion and storage field are developed.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ternary nanoarray electrode with corn-inspired hierarchical design for synergistic lithium storage

Show Author's information Jia Yu1,2Xi Wang3Shimou Chen1( )Xiaoyu Liu1Suojiang Zhang1( )
Beijing Key Laboratory of Ionic Liquids Clean Process,Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences,Beijing,100190,China;
University of Chinese Academy of Sciences, Beijing 100049, China
School of Sciences,Beijing Jiaotong University,Beijing,100044,China;

Abstract

Single-component anode materials can barely satisfy the growing demand for next-generation Li-ion batteries with higher capacity and cyclability. Thus developing multi-component synergistic electrodes has become a critical issue. Herein, inspired by natural corn, a ternary hierarchical self-supported array design is proposed. Based on a sequential transformation route, Si/C-modified Co3O4 nanowire arrays are constructed on 3D Ni foams to form a binder-free integrated electrode. Specifically, an ionic liquid-assisted electrodeposition strategy is employed to prepare discrete ultrafine Si nanoparticles on nanoscale array substrates, which follow the Volmer–Weber island growth mode. In this corn-mimetic system, kernel-like Si nanoparticles and a husk-like carbon coating layer function as enhancing and protecting units, respectively, to improve the capacity and stability of the cobalt oxide basic unit. Taking advantage of a synergistic effect, the ternary nanoarray anode achieves a significant performance enhancement compared to pristine Co3O4, showing a special capacity as high as ~1, 000 mAh·g−1 at 100 mA·g−1. By extending this corn-mimetic hierarchical array design to other basic, enhancing, and protecting units, new ideas for constructing synergistic nano-architectures for energy conversion and storage field are developed.

Keywords: ionic liquid, biomimetic material, cobalt oxide, Si, Li-ion battery, nanowire array

References(58)

1

Sakimoto, K. K.; Wong, A. B.; Yang, P. D. Self- photosensitization of nonphotosynthetic bacteria for solar- to-chemical production. Science 2016, 351, 74–77.

2

Simon, T.; Bouchonville, N.; Berr, M. J.; Vaneski, A.; Adrović, A.; Volbers, D.; Wyrwich, R.; Döblinger, M.; Susha, A. S.; Rogach, A. L. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 2014, 13, 1013–1018.

3

Gao, M. R.; Liang, J. X.; Zheng, Y. R.; Xu, Y. F.; Jiang, J.; Gao, Q.; Li, J; Yu, S. H. An efficient molybdenum disulfide/ cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 2015, 6, 5982.

4

Sevilla, G. A. T.; Rojas, J. P.; Fahad, H. M.; Hussain, A. M.; Ghanem, R.; Smith, C. E.; Hussain, M. M. Flexible and transparent silicon-on-polymer based sub-20 nm non-planar 3D FinFET for brain-architecture inspired computation. Adv. Mater. 2014, 26, 2794–2799.

5

Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.

6

Zhang, L.; Rajagopalan, R.; Guo, H. P.; Hu, X. L.; Dou, S. X.; Liu, H. K. A green and facile way to prepare granadilla-like silicon-based anode materials for Li-ion batteries. Adv. Funct. Mater. 2016, 26, 440–446.

7

Yu, Y.; Wen, H.; Ma, J. Y.; Lykkemark, S.; Xu, H.; Qin, J. H. Flexible fabrication of biomimetic bamboo-like hybrid microfibers. Adv. Mater. 2014, 26, 2494–2499.

8

Aravindan, V.; Lee, Y. S.; Madhavi, S. Research progress on negative electrodes for practical Li-ion batteries: Beyond carbonaceous anodes. Adv. Energy Mater. 2015, 5, 1402225.

9

Obrovac, M. N.; Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 2014, 114, 11444–11502.

10

Qiu, H. J.; Liu, L.; Mu, Y. P.; Zhang, H. J.; Wang, Y. Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices. Nano Res. 2015, 8, 321–339.

11

Ni, J. F.; Zhao, Y.; Liu, T. T.; Zheng, H. H.; Gao, L. J.; Yan, C. L.; Li, L. Strongly coupled Bi2S3@CNT hybrids for robust lithium storage. Adv. Energy Mater. 2014, 4, 1400798.

12

Li, X. D.; Feng, Y.; Li, M. C.; Li, W.; Wei, H.; Song, D. D. Smart hybrids of Zn2GeO4 nanoparticles and ultrathin g-C3N4 layers: Synergistic lithium storage and excellent electrochemical performance. Adv. Funct. Mater. 2015, 25, 6858–6866.

13

Kong, D. Z.; Luo, J. S.; Wang, Y. L.; Ren, W. N.; Yu, T.; Luo, Y. S.; Yang, Y. P.; Cheng, C. W. Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: Morphology control and electrochemical energy storage. Adv. Funct. Mater. 2014, 24, 3815–3826.

14

Chen, Y. M.; Yu, L.; Lou, X. W. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem., Int. Ed. 2016, 55, 5990–5993.

15

Gu, D.; Li, W.; Wang, F.; Bongard, H.; Spliethoff, B.; Schmidt, W.; Weidenthaler, C.; Xia, Y. Y.; Zhao, D. Y.; Schüth, F. Controllable synthesis of mesoporous peapod-like Co3O4@carbon nanotube arrays for high-performance lithium- ion batteries. Angew. Chem. Int. Ed. 2015, 54, 7060–7064.

16

Hwa, Y.; Kim, W. S.; Yu, B. C.; Hong, S. H.; Sohn, H. J. Enhancement of the cyclability of a Si anode through Co3O4 coating by the sol gel method. J. Phys. Chem. C 2013, 117, 7013–7017.

17

Wang, Y.; Zhang, H. J.; Lu, L.; Stubbs, L. P.; Wong, C. C.; Lin, J. Y. Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites. ACS Nano 2010, 4, 4753–4761.

18

Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265–270.

19

Zhang, W. X.; Yang, S. H. In situ fabrication of inorganic nanowire arrays grown from and aligned on metal substrates. Acc. Chem. Res. 2009, 42, 1617–1627.

20

Zhao, X.; Li, M. J.; Chang, K. H.; Lin, Y. M. Composites of graphene and encapsulated silicon for practically viable high-performance lithium-ion batteries. Nano Res. 2014, 7, 1429–1438.

21

Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. N. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042–1048.

22

Wang, B.; Li, X. L.; Zhang, X. F.; Luo, B.; Zhang, Y. B.; Zhi, L. J. Contact-engineered and void-involved silicon/ carbon nanohybrids as lithium-ion-battery anodes. Adv. Mater. 2013, 25, 3560–3565.

23

Park, E.; Yoo, H.; Lee, J.; Park, M. S.; Kim, Y. J.; Kim, H. Dual-size silicon nanocrystal-embedded SiOx nanocomposite as a high-capacity lithium storage material. ACS Nano 2015, 9, 7690–7696.

24

Zhang, R. Y.; Du, Y. J.; Li, D.; Shen, D. K.; Yang, J. P.; Guo, Z. P.; Liu, H. K.; Elzatahry, A. A.; Zhao, D. Y. Highly reversible and large lithium storage in mesoporous Si/C nanocomposite anodes with silicon nanoparticles embedded in a carbon framework. Adv. Mater. 2014, 26, 6749–6755.

25

Wang, W.; Ruiz, I.; Ahmed, K.; Bay, H. H.; George, A. S.; Wang, J.; Butler, J.; Ozkan, M.; Ozkan, C. S. Silicon decorated cone shaped carbon nanotube clusters for lithium ion battery anodes. Small 2014, 10, 3389–3396.

26

Jing, S. L.; Jiang, H.; Hu, Y. J.; Shen, J. H.; Li, C. Z. Face- to-face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life. Adv. Funct. Mater. 2015, 25, 5395–5401.

27

Yoo, J. K.; Kim, J.; Jung, Y. S.; Kang, K. Scalable fabrication of silicon nanotubes and their application to energy storage. Adv. Mater. 2012, 24, 5452–5456.

28

Du, F. H.; Wang, K. X.; Chen, J. S. Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. J. Mater. Chem. A 2016, 4, 32–50.

29

Ustarroz, J.; Hammons, J. A.; Altantzis, T.; Hubin, A.; Bals, S.; Terryn, H. A generalized electrochemical aggregative growth mechanism. J. Am. Chem. Soc. 2013, 135, 11550– 11561.

30

Guo, J. C.; Guo, X. W.; Wang, S. H.; Zhang, Z. C.; Dong, J.; Peng, L. M.; Ding, W. J. Effects of glycine and current density on the mechanism of electrodeposition, composition and properties of Ni-Mn films prepared in ionic liquid. Appl. Surf. Sci. 2016, 365, 31–37.

31

Song, T.; Cheng, H. Y.; Town, K.; Park, H.; Black, R. W.; Lee, S.; Park, W. I.; Huang, Y. G.; Rogers, J. A.; Nazar, L. F. et al. Electrochemical properties of Si-Ge heterostructures as an anode material for lithium ion batteries. Adv. Funct. Mater. 2014, 24, 1458–1464.

32

Luo, L. L.; Zhao, P.; Yang, H.; Liu, B. R.; Zhang, J. G.; Cui, Y.; Yu, G. H.; Zhang, S. L.; Wang, C. M. Surface coating constraint induced self-discharging of silicon nanoparticles as anodes for lithium ion batteries. Nano Lett. 2015, 15, 7016–7022.

33

Zhang, F.; Braun, G. B.; Shi, Y. F.; Zhang, Y. C.; Sun, X. H.; Reich, N. O.; Zhao, D. Y.; Stucky, G. Fabrication of Ag@SiO2@Y2O3: Er nanostructures for bioimaging: Tuning of the upconversion fluorescence with silver nanoparticles. J. Am. Chem. Soc. 2010, 132, 2850–2851.

34

Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180.

35

Liao, J. Y.; Manthiram, A. Mesoporous TiO2-Sn/C core– shell nanowire arrays as high-performance 3D anodes for Li-ion batteries. Adv. Energy Mater. 2014, 4, 1400403.

36

Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882.

37

Chen, S. Q.; Bao, P. T.; Huang, X. D.; Sun, B.; Wang, G. X. Hierarchical 3D mesoporous silicon@graphene nanoarchi­tectures for lithium ion batteries with superior performance. Nano Res. 2014, 7, 85–94.

38

Gueon, D.; Kang, D. Y.; Kim, J. S.; Kim, T. Y.; Lee, J. K.; Moon, J. H. Si nanoparticles-nested inverse opal carbon supports for highly stable lithium-ion battery anodes. J. Mater. Chem. A 2015, 3, 23684–23689.

39

Hassan, F. M.; Batmaz, R.; Li, J. D.; Wang, X. L.; Xiao, X. C.; Yu, A. P.; Chen, Z. W. Evidence of covalent synergy in silicon-sulfur-graphene yielding highly efficient and long-life lithium-ion batteries. Nat. Commun. 2015, 6, 8597.

40

Falola, B. D.; Suni, I. I. Low temperature electrochemical deposition of highly active elements. Curr. Opin. Solid State Mater. Sci. 2015, 19, 77–84.

41

Komadina, J.; Akiyoshi, T.; Ishibashi, Y.; Fukunaka, Y.; Homma, T. Electrochemical quartz crystal microbalance study of Si electrodeposition in ionic liquid. Electrochim. Acta 2013, 100, 236–241.

42

Vlaic, C. A.; Ivanov, S.; Peipmann, R.; Eisenhardt, A.; Himmerlich, M.; Krischok, S.; Bund, A. Electrochemical lithiation of thin silicon based layers potentiostatically deposited from ionic liquid. Electrochim. Acta 2015, 168, 403–413.

43

Borisenko, N.; Zein El Abedin, S.; Endres, F. In situ STM investigation of gold reconstruction and of silicon electro­deposition on Au(111) in the room temperature ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. J. Phys. Chem. B 2006, 110, 6250–6256.

44

Cho, J. S.; Hong, Y. J.; Kang, Y. C. Design and synthesis of bubble-nanorod-structured Fe2O3-carbon nanofibers as advanced anode material for Li-ion batteries. ACS Nano 2015, 9, 4026–4035.

45

Wang, J. Y.; Yang, N. L.; Tang, H. J.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang, Z. Y.; Wang, D. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem., Int. Ed. 2013, 52, 6417–6420.

46

Hao, W. J.; Chen, S. M.; Cai, Y. J.; Zhang, L.; Li, Z. X.; Zhang, S. J. Three-dimensional hierarchical pompon-like Co3O4 porous spheres for high-performance lithium-ion batteries. J. Mater. Chem. A 2014, 2, 13801–13804.

47

Zhukovskii, Y. F.; Balaya, P.; Kotomin, E. A.; Maier, J. Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations. Phys. Rev. Lett. 2006, 96, 058302.

48

Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496–11500.

49

Lin, N.; Han, Y.; Zhou, J.; Zhang, K. L.; Xu, T. J.; Zhu, Y. C.; Qian, Y. T. A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries. Energy Environ. Sci. 2015, 8, 3187–3191.

50
Tenhaeff, W. E.; Rios, O.; More, K.; McGuire, M. A. Highly robust lithium ion battery anodes from lignin: An abundant, renewable, and low-cost material. Adv. Funct. Mater. 2014, 24, 86–94.https://doi.org/10.1002/adfm.201301420
DOI
51

Zhong, J. H.; Wang, A. L.; Li, G. R.; Wang, J. W.; Ou, Y. N.; Tong, Y. X. Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J. Mater. Chem. 2012, 22, 5656–5665.

52

Ji, J. Y.; Ji, H. X.; Zhang, L. L.; Zhao, X.; Bai, X.; Fan, X. B.; Zhang, F. B.; Ruoff, R. S. Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium- ion batteries. Adv. Mater. 2013, 25, 4673–4677.

53

Yang, L.; Cheng, S.; Ding, Y.; Zhu, X. B.; Wang, Z. L.; Liu, M. L. Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Lett. 2012, 12, 321–325.

54

Liu, J. Y.; Li, N.; Goodman, M. D.; Zhang, H. G.; Epstein, E. S.; Huang, B.; Pan, Z.; Kim, J.; Choi, J. H.; Huang, X. J. et al. Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes. ACS Nano 2015, 9, 1985–1994.

55

Wang, D. L.; Yu, Y. C.; He, H.; Wang, J.; Zhou, W. D.; Abruña, H. D. Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium- ion batteries. ACS Nano 2015, 9, 1775–1781.

56

Liu, J. Y.; Zhang, H. G.; Wang, J. J.; Cho, J.; Pikul, J. H.; Epstein, E. S; Huang, X. J.; Liu, J. H.; King, W. P.; Braun, P. V. Hydrothermal fabrication of three-dimensional secondary battery anodes. Adv. Mater. 2014, 26, 7096–7101.

57

Huang, G.; Zhang, F. F.; Du, X. C.; Qin, Y. L.; Yin, D. M.; Wang, L. M. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 2015, 9, 1592–1599.

58

Liu, D. Q.; Wang, X.; Wang, X. B.; Tian, W.; Bando, Y.; Golberg, D. Co3O4 nanocages with highly exposed {110} facets for high-performance lithium storage. Sci. Rep. 2013, 3, 2543.

File
nr-10-1-172_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 July 2016
Revised: 26 August 2016
Accepted: 31 August 2016
Published: 29 September 2016
Issue date: January 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 21276257, 91534109 and 91434203), the "Strategic Priority Research Program" of the Chinese Academy of Sciences (No. XDA09010103) and National Key Projects for Fundamental Research and Development of China (No. 2016YFB0100104).

Return