AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ternary nanoarray electrode with corn-inspired hierarchical design for synergistic lithium storage

Jia Yu1,2Xi Wang3Shimou Chen1( )Xiaoyu Liu1Suojiang Zhang1 ( )
Beijing Key Laboratory of Ionic Liquids Clean Process,Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences,Beijing,100190,China;
University of Chinese Academy of Sciences, Beijing 100049, China
School of Sciences,Beijing Jiaotong University,Beijing,100044,China;
Show Author Information

Graphical Abstract

Abstract

Single-component anode materials can barely satisfy the growing demand for next-generation Li-ion batteries with higher capacity and cyclability. Thus developing multi-component synergistic electrodes has become a critical issue. Herein, inspired by natural corn, a ternary hierarchical self-supported array design is proposed. Based on a sequential transformation route, Si/C-modified Co3O4 nanowire arrays are constructed on 3D Ni foams to form a binder-free integrated electrode. Specifically, an ionic liquid-assisted electrodeposition strategy is employed to prepare discrete ultrafine Si nanoparticles on nanoscale array substrates, which follow the Volmer–Weber island growth mode. In this corn-mimetic system, kernel-like Si nanoparticles and a husk-like carbon coating layer function as enhancing and protecting units, respectively, to improve the capacity and stability of the cobalt oxide basic unit. Taking advantage of a synergistic effect, the ternary nanoarray anode achieves a significant performance enhancement compared to pristine Co3O4, showing a special capacity as high as ~1, 000 mAh·g−1 at 100 mA·g−1. By extending this corn-mimetic hierarchical array design to other basic, enhancing, and protecting units, new ideas for constructing synergistic nano-architectures for energy conversion and storage field are developed.

Electronic Supplementary Material

Download File(s)
nr-10-1-172_ESM.pdf (2.6 MB)

References

1

Sakimoto, K. K.; Wong, A. B.; Yang, P. D. Self- photosensitization of nonphotosynthetic bacteria for solar- to-chemical production. Science 2016, 351, 74–77.

2

Simon, T.; Bouchonville, N.; Berr, M. J.; Vaneski, A.; Adrović, A.; Volbers, D.; Wyrwich, R.; Döblinger, M.; Susha, A. S.; Rogach, A. L. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 2014, 13, 1013–1018.

3

Gao, M. R.; Liang, J. X.; Zheng, Y. R.; Xu, Y. F.; Jiang, J.; Gao, Q.; Li, J; Yu, S. H. An efficient molybdenum disulfide/ cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 2015, 6, 5982.

4

Sevilla, G. A. T.; Rojas, J. P.; Fahad, H. M.; Hussain, A. M.; Ghanem, R.; Smith, C. E.; Hussain, M. M. Flexible and transparent silicon-on-polymer based sub-20 nm non-planar 3D FinFET for brain-architecture inspired computation. Adv. Mater. 2014, 26, 2794–2799.

5

Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.

6

Zhang, L.; Rajagopalan, R.; Guo, H. P.; Hu, X. L.; Dou, S. X.; Liu, H. K. A green and facile way to prepare granadilla-like silicon-based anode materials for Li-ion batteries. Adv. Funct. Mater. 2016, 26, 440–446.

7

Yu, Y.; Wen, H.; Ma, J. Y.; Lykkemark, S.; Xu, H.; Qin, J. H. Flexible fabrication of biomimetic bamboo-like hybrid microfibers. Adv. Mater. 2014, 26, 2494–2499.

8

Aravindan, V.; Lee, Y. S.; Madhavi, S. Research progress on negative electrodes for practical Li-ion batteries: Beyond carbonaceous anodes. Adv. Energy Mater. 2015, 5, 1402225.

9

Obrovac, M. N.; Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 2014, 114, 11444–11502.

10

Qiu, H. J.; Liu, L.; Mu, Y. P.; Zhang, H. J.; Wang, Y. Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices. Nano Res. 2015, 8, 321–339.

11

Ni, J. F.; Zhao, Y.; Liu, T. T.; Zheng, H. H.; Gao, L. J.; Yan, C. L.; Li, L. Strongly coupled Bi2S3@CNT hybrids for robust lithium storage. Adv. Energy Mater. 2014, 4, 1400798.

12

Li, X. D.; Feng, Y.; Li, M. C.; Li, W.; Wei, H.; Song, D. D. Smart hybrids of Zn2GeO4 nanoparticles and ultrathin g-C3N4 layers: Synergistic lithium storage and excellent electrochemical performance. Adv. Funct. Mater. 2015, 25, 6858–6866.

13

Kong, D. Z.; Luo, J. S.; Wang, Y. L.; Ren, W. N.; Yu, T.; Luo, Y. S.; Yang, Y. P.; Cheng, C. W. Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: Morphology control and electrochemical energy storage. Adv. Funct. Mater. 2014, 24, 3815–3826.

14

Chen, Y. M.; Yu, L.; Lou, X. W. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem., Int. Ed. 2016, 55, 5990–5993.

15

Gu, D.; Li, W.; Wang, F.; Bongard, H.; Spliethoff, B.; Schmidt, W.; Weidenthaler, C.; Xia, Y. Y.; Zhao, D. Y.; Schüth, F. Controllable synthesis of mesoporous peapod-like Co3O4@carbon nanotube arrays for high-performance lithium- ion batteries. Angew. Chem. Int. Ed. 2015, 54, 7060–7064.

16

Hwa, Y.; Kim, W. S.; Yu, B. C.; Hong, S. H.; Sohn, H. J. Enhancement of the cyclability of a Si anode through Co3O4 coating by the sol gel method. J. Phys. Chem. C 2013, 117, 7013–7017.

17

Wang, Y.; Zhang, H. J.; Lu, L.; Stubbs, L. P.; Wong, C. C.; Lin, J. Y. Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites. ACS Nano 2010, 4, 4753–4761.

18

Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265–270.

19

Zhang, W. X.; Yang, S. H. In situ fabrication of inorganic nanowire arrays grown from and aligned on metal substrates. Acc. Chem. Res. 2009, 42, 1617–1627.

20

Zhao, X.; Li, M. J.; Chang, K. H.; Lin, Y. M. Composites of graphene and encapsulated silicon for practically viable high-performance lithium-ion batteries. Nano Res. 2014, 7, 1429–1438.

21

Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. N. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042–1048.

22

Wang, B.; Li, X. L.; Zhang, X. F.; Luo, B.; Zhang, Y. B.; Zhi, L. J. Contact-engineered and void-involved silicon/ carbon nanohybrids as lithium-ion-battery anodes. Adv. Mater. 2013, 25, 3560–3565.

23

Park, E.; Yoo, H.; Lee, J.; Park, M. S.; Kim, Y. J.; Kim, H. Dual-size silicon nanocrystal-embedded SiOx nanocomposite as a high-capacity lithium storage material. ACS Nano 2015, 9, 7690–7696.

24

Zhang, R. Y.; Du, Y. J.; Li, D.; Shen, D. K.; Yang, J. P.; Guo, Z. P.; Liu, H. K.; Elzatahry, A. A.; Zhao, D. Y. Highly reversible and large lithium storage in mesoporous Si/C nanocomposite anodes with silicon nanoparticles embedded in a carbon framework. Adv. Mater. 2014, 26, 6749–6755.

25

Wang, W.; Ruiz, I.; Ahmed, K.; Bay, H. H.; George, A. S.; Wang, J.; Butler, J.; Ozkan, M.; Ozkan, C. S. Silicon decorated cone shaped carbon nanotube clusters for lithium ion battery anodes. Small 2014, 10, 3389–3396.

26

Jing, S. L.; Jiang, H.; Hu, Y. J.; Shen, J. H.; Li, C. Z. Face- to-face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life. Adv. Funct. Mater. 2015, 25, 5395–5401.

27

Yoo, J. K.; Kim, J.; Jung, Y. S.; Kang, K. Scalable fabrication of silicon nanotubes and their application to energy storage. Adv. Mater. 2012, 24, 5452–5456.

28

Du, F. H.; Wang, K. X.; Chen, J. S. Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. J. Mater. Chem. A 2016, 4, 32–50.

29

Ustarroz, J.; Hammons, J. A.; Altantzis, T.; Hubin, A.; Bals, S.; Terryn, H. A generalized electrochemical aggregative growth mechanism. J. Am. Chem. Soc. 2013, 135, 11550– 11561.

30

Guo, J. C.; Guo, X. W.; Wang, S. H.; Zhang, Z. C.; Dong, J.; Peng, L. M.; Ding, W. J. Effects of glycine and current density on the mechanism of electrodeposition, composition and properties of Ni-Mn films prepared in ionic liquid. Appl. Surf. Sci. 2016, 365, 31–37.

31

Song, T.; Cheng, H. Y.; Town, K.; Park, H.; Black, R. W.; Lee, S.; Park, W. I.; Huang, Y. G.; Rogers, J. A.; Nazar, L. F. et al. Electrochemical properties of Si-Ge heterostructures as an anode material for lithium ion batteries. Adv. Funct. Mater. 2014, 24, 1458–1464.

32

Luo, L. L.; Zhao, P.; Yang, H.; Liu, B. R.; Zhang, J. G.; Cui, Y.; Yu, G. H.; Zhang, S. L.; Wang, C. M. Surface coating constraint induced self-discharging of silicon nanoparticles as anodes for lithium ion batteries. Nano Lett. 2015, 15, 7016–7022.

33

Zhang, F.; Braun, G. B.; Shi, Y. F.; Zhang, Y. C.; Sun, X. H.; Reich, N. O.; Zhao, D. Y.; Stucky, G. Fabrication of Ag@SiO2@Y2O3: Er nanostructures for bioimaging: Tuning of the upconversion fluorescence with silver nanoparticles. J. Am. Chem. Soc. 2010, 132, 2850–2851.

34

Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180.

35

Liao, J. Y.; Manthiram, A. Mesoporous TiO2-Sn/C core– shell nanowire arrays as high-performance 3D anodes for Li-ion batteries. Adv. Energy Mater. 2014, 4, 1400403.

36

Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882.

37

Chen, S. Q.; Bao, P. T.; Huang, X. D.; Sun, B.; Wang, G. X. Hierarchical 3D mesoporous silicon@graphene nanoarchi­tectures for lithium ion batteries with superior performance. Nano Res. 2014, 7, 85–94.

38

Gueon, D.; Kang, D. Y.; Kim, J. S.; Kim, T. Y.; Lee, J. K.; Moon, J. H. Si nanoparticles-nested inverse opal carbon supports for highly stable lithium-ion battery anodes. J. Mater. Chem. A 2015, 3, 23684–23689.

39

Hassan, F. M.; Batmaz, R.; Li, J. D.; Wang, X. L.; Xiao, X. C.; Yu, A. P.; Chen, Z. W. Evidence of covalent synergy in silicon-sulfur-graphene yielding highly efficient and long-life lithium-ion batteries. Nat. Commun. 2015, 6, 8597.

40

Falola, B. D.; Suni, I. I. Low temperature electrochemical deposition of highly active elements. Curr. Opin. Solid State Mater. Sci. 2015, 19, 77–84.

41

Komadina, J.; Akiyoshi, T.; Ishibashi, Y.; Fukunaka, Y.; Homma, T. Electrochemical quartz crystal microbalance study of Si electrodeposition in ionic liquid. Electrochim. Acta 2013, 100, 236–241.

42

Vlaic, C. A.; Ivanov, S.; Peipmann, R.; Eisenhardt, A.; Himmerlich, M.; Krischok, S.; Bund, A. Electrochemical lithiation of thin silicon based layers potentiostatically deposited from ionic liquid. Electrochim. Acta 2015, 168, 403–413.

43

Borisenko, N.; Zein El Abedin, S.; Endres, F. In situ STM investigation of gold reconstruction and of silicon electro­deposition on Au(111) in the room temperature ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. J. Phys. Chem. B 2006, 110, 6250–6256.

44

Cho, J. S.; Hong, Y. J.; Kang, Y. C. Design and synthesis of bubble-nanorod-structured Fe2O3-carbon nanofibers as advanced anode material for Li-ion batteries. ACS Nano 2015, 9, 4026–4035.

45

Wang, J. Y.; Yang, N. L.; Tang, H. J.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang, Z. Y.; Wang, D. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem., Int. Ed. 2013, 52, 6417–6420.

46

Hao, W. J.; Chen, S. M.; Cai, Y. J.; Zhang, L.; Li, Z. X.; Zhang, S. J. Three-dimensional hierarchical pompon-like Co3O4 porous spheres for high-performance lithium-ion batteries. J. Mater. Chem. A 2014, 2, 13801–13804.

47

Zhukovskii, Y. F.; Balaya, P.; Kotomin, E. A.; Maier, J. Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations. Phys. Rev. Lett. 2006, 96, 058302.

48

Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496–11500.

49

Lin, N.; Han, Y.; Zhou, J.; Zhang, K. L.; Xu, T. J.; Zhu, Y. C.; Qian, Y. T. A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries. Energy Environ. Sci. 2015, 8, 3187–3191.

50
Tenhaeff, W. E.; Rios, O.; More, K.; McGuire, M. A. Highly robust lithium ion battery anodes from lignin: An abundant, renewable, and low-cost material. Adv. Funct. Mater. 2014, 24, 86–94.https://doi.org/10.1002/adfm.201301420
51

Zhong, J. H.; Wang, A. L.; Li, G. R.; Wang, J. W.; Ou, Y. N.; Tong, Y. X. Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J. Mater. Chem. 2012, 22, 5656–5665.

52

Ji, J. Y.; Ji, H. X.; Zhang, L. L.; Zhao, X.; Bai, X.; Fan, X. B.; Zhang, F. B.; Ruoff, R. S. Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium- ion batteries. Adv. Mater. 2013, 25, 4673–4677.

53

Yang, L.; Cheng, S.; Ding, Y.; Zhu, X. B.; Wang, Z. L.; Liu, M. L. Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Lett. 2012, 12, 321–325.

54

Liu, J. Y.; Li, N.; Goodman, M. D.; Zhang, H. G.; Epstein, E. S.; Huang, B.; Pan, Z.; Kim, J.; Choi, J. H.; Huang, X. J. et al. Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes. ACS Nano 2015, 9, 1985–1994.

55

Wang, D. L.; Yu, Y. C.; He, H.; Wang, J.; Zhou, W. D.; Abruña, H. D. Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium- ion batteries. ACS Nano 2015, 9, 1775–1781.

56

Liu, J. Y.; Zhang, H. G.; Wang, J. J.; Cho, J.; Pikul, J. H.; Epstein, E. S; Huang, X. J.; Liu, J. H.; King, W. P.; Braun, P. V. Hydrothermal fabrication of three-dimensional secondary battery anodes. Adv. Mater. 2014, 26, 7096–7101.

57

Huang, G.; Zhang, F. F.; Du, X. C.; Qin, Y. L.; Yin, D. M.; Wang, L. M. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 2015, 9, 1592–1599.

58

Liu, D. Q.; Wang, X.; Wang, X. B.; Tian, W.; Bando, Y.; Golberg, D. Co3O4 nanocages with highly exposed {110} facets for high-performance lithium storage. Sci. Rep. 2013, 3, 2543.

Nano Research
Pages 172-186
Cite this article:
Yu J, Wang X, Chen S, et al. Ternary nanoarray electrode with corn-inspired hierarchical design for synergistic lithium storage. Nano Research, 2017, 10(1): 172-186. https://doi.org/10.1007/s12274-016-1276-6

626

Views

13

Crossref

N/A

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 15 July 2016
Revised: 26 August 2016
Accepted: 31 August 2016
Published: 29 September 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return