Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Adsorbents are widely employed in both fundamental and applied research areas such as separation technology, biotechnology, and environmental science. Selectivity and reusability are two most important requirements for adsorbents. Aptamers exhibit perfect selectivity and easy regeneration, which make them uniquely effective adsorption materials. Herein, we have rationally designed novel aptamer-based adsorbents and investigated their performance in extraction/separation of targets from an aqueous solution. These adsorbents can selectively extract targets from complicated sample matrices containing background compounds. Moreover, they can also be easily recycled without a significant loss of adsorption capacity. Notably, the adsorbents did not affect the activity of isolated biological samples, revealing their potential for the purification/separation of biomolecules. Composite adsorbents were constructed using aptamer-based adsorbents and a porous polymer, displaying highly efficient target separation from aqueous solution. Finally, separation columns were constructed, and targets in the aqueous solution were efficiently separated by these columns. The aptamer- based adsorbents described here exhibit great promise for potential applications in separation technology, biotechnology, and environment-related areas.
Augusto, F.; Carasek, E.; Silva, R. G. C.; Rivellino, S. R.; Batista, A. D.; Martendal, E. New sorbents for extraction and microextraction techniques. J. Chromatogr. A 2010, 1217, 2533–2542.
Dąbrowski, A. Adsorption—From theory to practice. Adv. Colloid Interface Sci. 2001, 93, 135–224.
Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 2008, 130, 28–29.
Crane, R. A.; Dickinson, M.; Popescu, I. C.; Scott, T. B. Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res. 2011, 45, 2931–2942.
Lukens, W. W., Jr.; Schmidt-Winkel, P.; Zhao, D. Y.; Feng, J. L.; Stucky, G. D. Evaluating pore sizes in mesoporous materials: A simplified standard adsorption method and a simplified broekhoff-de Boer method. Langmuir 1999, 15, 5403–5409.
Liu, B. W.; Liu, J. W. DNA adsorption by magnetic iron oxide nanoparticles and its application for arsenate detection. Chem. Commun. 2014, 50, 8568–8570.
Huang, D. N.; Deng, C. H.; Zhang, X. M. Functionalized magnetic nanomaterials as solid-phase extraction adsorbents for organic pollutants in environmental analysis. Anal. Methods 2014, 6, 7130–7141.
Borlido, L.; Azevedo, A. M.; Roque, A. C. A.; Aires-Barros, M. R. Magnetic separations in biotechnology. Biotechnol. Adv. 2013, 31, 1374–1385.
Teng, W.; Wu, Z. X.; Fan, J. W.; Chen, H.; Feng, D.; Lv, Y. Y.; Wang, J. X.; Asiri, A. M.; Zhao, D. Y. Ordered mesoporous carbons and their corresponding column for highly efficient removal of microcystin-LR. Energy Environ. Sci. 2013, 6, 2765–2776.
Kalia, S.; Kango, S.; Kumar, A.; Haldorai, Y.; Kumari, B.; Kumar, R. Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym. Sci. 2014, 292, 2025–2052.
Qu, X. L.; Alvarez, P. J. J.; Li, Q. L. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946.
Soto, M. L.; Moure, A.; Domínguez, H.; Parajó, J. C. Recovery, concentration and purification of phenolic compounds by adsorption: A review. J. Food Eng. 2011, 105, 1–27.
Wu, Z. X.; Li, W.; Webley, P. A.; Zhao, D. Y. General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal. Adv. Mater. 2012, 24, 485–491.
Wang, J.; Shen, H. J.; Hu, X. X.; Li, Y.; Li, Z. H.; Xu, J. F.; Song, X. F.; Zeng, H. B.; Yuan, Q. A targeted "capture" and "removal" scavenger toward multiple pollutants for water remediation based on molecular recognition. Adv. Sci. 2016, 3, 1500289.
Wang, P.; Shi, Q. H.; Liang, H. J.; Steuerman, D. W.; Stucky, G. D.; Keller, A. A. Enhanced environmental mobility of carbon nanotubes in the presence of humic acid and their removal from aqueous solution. Small 2008, 4, 2166–2170.
Huang, P. J. J.; Liu, J. W. Immobilization of DNA on magnetic microparticles for mercury enrichment and detection with flow cytometry. Chem. —Eur. J. 2011, 17, 5004–5010.
Xie, L. J.; Jiang, R. F.; Zhu, F.; Liu, H.; Ouyang, G. F. Application of functionalized magnetic nanoparticles in sample preparation. Anal. Bioanal. Chem. 2014, 406, 377–399.
Bunka, D. H. J.; Stockley, P. G. Aptamers come of age—At last. Nat. Rev. Microbiol. 2006, 4, 588–596.
Liu, J. W.; Cao, Z. H.; Lu, Y. Functional nucleic acid sensors. Chem. Rev. 2009, 109, 1948–1998.
Tan, W. H.; Donovan, M. J.; Jiang, J. H. Aptamers from cell- based selection for bioanalytical applications. Chem. Rev. 2013, 113, 2842–2862.
Pei, H.; Zuo, X.; Zhu, D.; Huang, Q.; Fan, C. Functional DNA nanostructures for theranostic applications. Acc. Chem. Res. 2014, 47, 550–559.
Fang, X. H.; Tan, W. H. Aptamers generated from Cell- SELEX for molecular medicine: A chemical biology approach. Acc. Chem. Res. 2010, 43, 48–57.
Hamula, C. L. A.; Guthrie, J. W.; Zhang, H. Q.; Li, X. F.; Le, X. C. Selection and analytical applications of aptamers. TrAC Trend. Anal. Chem. 2006, 25, 681–691.
Giljohann, D. A.; Mirkin, C. A. Drivers of biodiagnostic development. Nature 2009, 462, 461–464.
Hamula, C. L. A.; Zhang, H. Q.; Guan, L. L.; Li, X. F.; Le, X. C. Selection of aptamers against live bacterial cells. Anal. Chem. 2008, 80, 7812–7819.
Liu, Q. L.; Jin, C.; Wang, Y. Y.; Fang, X. H.; Zhang, X. B.; Chen, Z.; Tan, W. H. Aptamer-conjugated nanomaterials for specific cancer cell recognition and targeted cancer therapy. NPG Asia Mater. 2014, 6, e95.
Song, S. P.; Wang, L. H.; Li, J.; Fan, C. H.; Zhao, J. L. Aptamer-based biosensors. TrAC Trend. Anal. Chem. 2008, 27, 108–117.
Jayasena, S. D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 1999, 45, 1628–1650.
Guo, W.; Hong, F.; Liu, N. N.; Huang, J. Y.; Wang, B. Y.; Duan, R. X.; Lou, X. D.; Xia, F. Target-specific 3D DNA gatekeepers for biomimetic nanopores. Adv. Mater. 2015, 27, 2090–2095.
Zheng, D.; Seferos, D. S.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A. Aptamer nano-flares for molecular detection in living cells. Nano Lett. 2009, 9, 3258–3261.
Mairal, T.; Özalp, V. C.; Sánchez, P. L.; Mir, M.; Katakis, I.; O'Sullivan, C. K. Aptamers: Molecular tools for analytical applications. Anal. Bioanal. Chem. 2008, 390, 989–1007.
Tombelli, S.; Minunni, M.; Mascini, M. Analytical applications of aptamers. Biosens. Bioelectron. 2005, 20, 2424–2434.
Liang, H.; Zhang, X. B.; Lv, Y. F.; Gong, L.; Wang, R. W.; Zhu, X. Y.; Yang, R. H.; Tan, W. H. Functional DNA- containing nanomaterials: Cellular applications in biosensing, imaging, and targeted therapy. Acc. Chem. Res. 2014, 47, 1891–1901.
Tombelli, S.; Minunni, M.; Mascini, M. Aptamers-based assays for diagnostics, environmental and food analysis. Biomol. Eng. 2007, 24, 191–200.
Palchetti, I.; Mascini, M. Nucleic acid biosensors for environmental pollution monitoring. Analyst 2008, 133, 846–854.
Huang, P. J.; Liu, J. W. Flow cytometry-assisted detection of adenosine in serum with an immobilized aptamer sensor. Anal. Chem. 2010, 82, 4020–4026.
Zhao, Q.; Li, X. F.; Le, X. C. Aptamer-modified monolithic capillary chromatography for protein separation and detection. Anal. Chem. 2008, 80, 3915–3920.
Wang, J.; Wei, Y. R.; Hu, X. X.; Fang, Y. Y.; Li, X. Y.; Liu, J.; Wang, S. F.; Yuan, Q. Protein activity regulation: Inhibition by closed-loop aptamer-based structures and restoration by near-IR stimulation. J. Am. Chem. Soc. 2015, 137, 10576–10584.
Li, W.; Yang, J. P.; Wu, Z. X.; Wang, J. X.; Li, B.; Feng, S. S.; Deng, Y. H.; Zhang, F.; Zhao, D. Y. A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core–shell structures. J. Am. Chem. Soc. 2012, 134, 11864–11867.
Yuan, Y.; Chen, S.; Paunesku, T.; Gleber, S. C.; Liu, W. C.; Doty, C. B.; Mak, R.; Deng, J. J.; Jin, Q. L.; Lai, B. et al. Epidermal growth factor receptor targeted nuclear delivery and high-resolution whole cell X-ray imaging of Fe3O4@TiO2 nanoparticles in cancer cells. ACS Nano 2013, 7, 10502– 10517.
Yuan, Q.; Wu, Y.; Wang, J.; Lu, D. Q.; Zhao, Z. L.; Liu, T.; Zhang, X. B.; Tan, W. H. Targeted bioimaging and photodynamic therapy nanoplatform using an aptamer- guided G-quadruplex DNA carrier and near-infrared light. Angew. Chem., Int. Ed. 2013, 52, 13965 –13969.
Dave, N.; Chan, M. Y.; Huang, P. J. J.; Smith, B. D.; Liu, J. W. Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water. J. Am. Chem. Soc. 2010, 132, 12668–12673.
Jo, M.; Ahn, J. Y.; Lee, J.; Lee, S.; Hong, S. W.; Yoo, J. W.; Kang, J.; Dua, P. Lee, D. K.; Hong, S. et al. Development of single-stranded DNA aptamers for specific bisphenol a detection. Oligonucleotides 2011, 21, 85–91.
Chang, Y. C.; Yang, C. Y.; Sun, R. L.; Cheng, Y. F.; Kao, W. C.; Yang, P. C. Rapid single cell detection of staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci. Rep. 2013, 3, 1863.
Song, H.; Nor, Y. A.; Yu, M. H.; Yang, Y. N.; Zhang, J.; Zhang, H. W.; Xu, C.; Mitter, N.; Yu, C. Z. Silica nanopollens enhance adhesion for long-term bacterial inhibition. J. Am. Chem. Soc. 2016, 138, 6455−6462.
Zhu, M.; Zhu, Y. F.; Zhang, L. X.; Shi, J. L. Preparation of chitosan/mesoporous silica nanoparticle composite hydrogels for sustained co-delivery of biomacromolecules and small chemical drugs. Sci. Technol. Adv. Mat. 2013, 14, 045005.