AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Effect of carrier screening on ZnO-based resistive switching memory devices

Yihui Sun1Xiaoqin Yan1( )Xin Zheng1Yong Li1Yichong Liu1Yanwei Shen1Yi Ding1Yue Zhang1,2( )
State Key Laboratory for Advanced Metals and Materials,School of Materials Science and Engineering, University of Science and Technology Beijing,Beijing,100083,China;
Beijing Municipal Key Laboratory of New Energy Materials and Technologies,University of Science and Technology Beijing,Beijing,100083,China;
Show Author Information

Graphical Abstract

Abstract

The carrier screening effect occurs commonly in dielectric materials. It reduces the electric potential gradient, thus negatively affecting the functionality of resistive random access memory (RRAM) devices. An Au/ZnO film/Al-doped ZnO device fabricated in this work exhibited no resistive switching (RS), which was attributed to the carrier screening effect. Therefore, annealing was used for alleviating the screening effect, significantly enhancing the RS property. In addition, different on/off ratios were obtained for various bias values, and the screening effect was accounted for by investigating electron transport mechanisms. Furthermore, different annealing temperatures were employed to modulate the free carrier concentration in ZnO films to alleviate the screening effect. The maximal on/off ratio reached 105 at an annealing temperature of 600 ℃, yielding the lowest number of free carriers and the weakest screening effect in ZnO films. This work investigates the screening effect in RS devices. The screening effect not only modulates the characteristics of memory devices but also provides insight into the mechanism of RS in these devices.

Electronic Supplementary Material

Download File(s)
nr-10-1-77_ESM.pdf (1.1 MB)

References

1

Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature 2008, 453, 80–83.

2

Jo, S. H.; Kim, K. H.; Lu, W. High-density crossbar arrays based on a Si memristive system. Nano Lett. 2009, 9, 870–874.

3

Driscoll, T.; Kim, H. T.; Chae, B. G.; Kim, B. J.; Lee, Y. W.; Jokerst, N. M.; Palit, S.; Smith, D. R.; Di Ventra, M.; Basov, D. N. Memory metamaterials. Science 2009, 325, 1518–1521.

4

Borghetti, J.; Snider, G. S.; Kuekes, P. J.; Yang, J. J.; Stewart, D. R.; Williams, R. S. 'Memristive' switches enable 'stateful' logic operations via material implication. Nature 2010, 464, 873–876.

5

Yao, J.; Lin, J.; Dai, Y. H.; Ruan, G. D.; Yan, Z.; Li, L.; Zhong, L.; Natelson, D.; Tour, J. M. Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene. Nat. Commun. 2012, 3, 1101.

6

Bessonov, A. A.; Kirikova, M. N.; Petukhov, D. I.; Allen, M.; Ryhanen, T.; Bailey, M. J. A. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 2015, 14, 199–204.

7

Lee, M. J.; Lee, C. B.; Lee, D.; Lee, S. R.; Chang, M.; Hur, J. H.; Kim, Y. B.; Kim, C. J.; Seo, D. H.; Seo, S. et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5–x/TaO2–x bilayer structures. Nat. Mater. 2011, 10, 625–630.

8

Linn, E.; Rosezin, R.; Kugeler, C.; Waser, R. Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 2010, 9, 403–406.

9

Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840.

10

Wedig, A.; Luebben, M.; Cho, D. Y.; Moors, M.; Skaja, K.; Rana, V.; Hasegawa, T.; Adepalli, K. K.; Yildiz, B.; Waser, R. et al. Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat. Nanotechnol. 2016, 11, 67–74.

11

Banerjee, W.; Xu, X. X.; Liu, H. T.; Lv, H. B.; Liu, Q.; Sun, H. T.; Long, S. B.; Liu, M. Occurrence of resistive switching and threshold switching in atomic layer deposited ultrathin (2 nm) aluminium oxide crossbar resistive random access memory. IEEE Electron Dev. Lett. 2015, 36, 333–335.

12

Wang, M.; Bi, C.; Li, L.; Long, S. B.; Liu, Q.; Lv, H. B.; Lu, N.; Sun, P. X.; Liu, M. Thermoelectric seebeck effect in oxide-based resistive switching memory. Nat. Commun. 2014, 5, 4598.

13

Zhang, J.; Yang, H.; Zhang, Q.-L.; Dong, S. R.; Luo, J. K. Structural, optical, electrical and resistive switching properties of ZnO thin films deposited by thermal and plasma-enhanced atomic layer deposition. Appl. Surf. Sci. 2013, 282, 390–395.

14

Huang, C. H.; Huang, J. S.; Lai, C. C.; Huang, H. W.; Lin, S. J.; Chueh, Y. L. Manipulated transformation of filamentary and homogeneous resistive switching on ZnO thin film memristor with controllable multistate. ACS Appl. Mater. Interfaces 2013, 5, 6017–6023.

15

Lin, S. M.; Huang, J. S.; Chang, W. C.; Hou, T. C.; Huang, H. W.; Huang, C. H.; Lin, S. J.; Chueh, Y. L. Single-step formation of ZnO/ZnWOx bilayer structure via interfacial engineering for high performance and low energy consumption resistive memory with controllable high resistance states. ACS Appl. Mater. Interfaces 2013, 5, 7831–7837.

16

Huang, C. H.; Huang, J. S.; Lin, S. M.; Chang, W. Y.; He, J. H.; Chueh, Y. L. ZnO1–x nanorod arrays/ZnO thin film bilayer structure: From homojunction diode and highperformance memristor to complementary 1D1R application. ACS Nano 2012, 6, 8407–8414.

17

Yang, Y. C.; Pan, F.; Liu, Q.; Liu, M.; Zeng, F. Fully roomtemperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett. 2009, 9, 1636–1643.

18

Long, S. B.; Perniola, L.; Cagli, C.; Buckley, J.; Lian, X. J.; Miranda, E.; Pan, F.; Liu, M.; Suñé, J. Voltage and powercontrolled regimes in the progressive unipolar RESET transition of HfO2-based RRAM. Sci. Rep. 2013, 3, 2929.

19

Long, S. B.; Lian, X. J.; Cagli, C.; Perniola, L.; Miranda, E.; Liu, M.; Suñé, J. A model for the set statistics of RRAM inspired in the percolation model of oxide breakdown. IEEE Electron Dev. Lett. 2013, 34, 999–1001.

20

Cho, B.; Song, S.; Ji, Y.; Kim, T.-W.; Lee, T. Organic resistive memory devices: Performance enhancement, integration, and advanced architectures. Adv. Funct. Mater. 2011, 21, 2806–2829.

21

Sun, Y. H.; Yan, X. Q.; Zheng, X.; Liu, Y. C.; Zhao, Y. G.; Shen, Y. W.; Liao, Q. L.; Zhang, Y. High on-off ratio improvement of ZnO-based forming-free memristor by surface hydrogen annealing. ACS Appl Mater. Interfaces 2015, 7, 7382–7388.

22

Yang, J. J.; Strukov, D. B.; Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 2013, 8, 13–24.

23

Shi, J.; Starr, M. B.; Wang, X. D. Band structure engineering at heterojunction interfaces via the piezotronic effect. Adv. Mater. 2012, 24, 4683–4691.

24

Shi, J.; Zhao, P.; Wang, X. D. Piezoelectric-polarizationenhanced photovoltaic performance in depleted-heterojunction quantum-dot solar cells. Adv. Mater. 2013, 25, 916–921.

25

Carcia, P. F.; McLean, R. S.; Reilly, M. H. High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition. Appl. Phys. Lett. 2006, 88, 123509.

26

Sun, Y. H.; Yan, X. Q.; Zheng, X.; Liu, Y. C.; Shen, Y. W.; Zhang, Y. Influence of carrier concentration on the resistive switching characteristics of a ZnO-based memristor. Nano Res. 2016, 9, 1116–1124.

27

Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv. Mater. 2009, 21, 2632–2663.

28

Qi, J. J.; Hu, X. F.; Wang, Z. Z.; Li, X.; Liu, W.; Zhang, Y. A self-powered ultraviolet detector based on a single ZnO microwire/p-Si film with double heterojunctions. Nanoscale 2014, 6, 6025–6029.

29

An, J. U.; Yun, H. J.; Jeong, K. S.; Kim, Y. M.; Yang, S. D.; Kim, S. H.; Kim, J. S.; Ko, Y. U.; Lee, H. D.; Lee, G. W. Improvement in n-ZnO/p-Si diode properties using ZnO/AZO homogeneous metal contact. Jpn. J. Appl. Phys. 2014, 53, 08NJ03.

30

Lampert, M. A. Simplified theory of space-charge-limited currents in an insulator with traps. Phys. Rev. 1956, 103, 1648–1656.

31

Zeng, H. B.; Duan, G. T.; Li, Y.; Yang, S. K.; Xu, X. X.; Cai, W. P. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls. Adv. Funct. Mater. 2010, 20, 561–572.

32

Park, J.; Lee, S.; Lee, J.; Yong, K. A light incident angle switchable ZnO nanorod memristor: Reversible switching behavior between two non-volatile memory devices. Adv. Mater. 2013, 25, 6423–6429.

33

Hu, W.; Zou, L. L.; Chen, X. M.; Qin, N.; Li, S. W.; Bao, D. H. Highly uniform resistive switching properties of amorphous InGaZnO thin films prepared by a low temperature photochemical solution deposition method. ACS Appl. Mater. Interfaces 2014, 6, 5012–5017.

34

Sohn, J. I.; Cha, S. N.; Song, B. G.; Lee, S.; Kim, S. M.; Ku, J.; Kim, H. J.; Park, Y. J.; Choi, B. L.; Wang, Z. L. et al. Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation. Energy Environ. Sci. 2013, 6, 97–104.

35

Lu, S. N.; Qi, J. J.; Gu, Y. S.; Liu, S.; Xu, Q. K.; Wang, Z. Z.; Liang, Q. J.; Zhang, Y. Influence of the carrier concentration on the piezotronic effect in a ZnO/Au Schottky junction. Nanoscale 2015, 7, 4461–4467.

Nano Research
Pages 77-86
Cite this article:
Sun Y, Yan X, Zheng X, et al. Effect of carrier screening on ZnO-based resistive switching memory devices. Nano Research, 2017, 10(1): 77-86. https://doi.org/10.1007/s12274-016-1267-7

784

Views

31

Crossref

N/A

Web of Science

32

Scopus

0

CSCD

Altmetrics

Received: 06 July 2016
Revised: 21 August 2016
Accepted: 26 August 2016
Published: 20 October 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return