Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As a hybrid imaging technique, photoacoustic imaging (PAI) can provide multiscale morphological information of tissues, and the use of multi-spectral PAI (MSPAI) can recover the spatial distribution of chromophores of interest, such as hemoglobin within tissues. Herein, we developed a contrast agent that can very effectively combine multiscale PAI with MSPAI for a more comprehensive characterization of complex biological tissues. Specifically, we developed novel PIID-DTBT based semi-conducting polymer dots (Pdots) that show broad and strong optical absorption in the visible-light region (500–700 nm). The performances of gold nanoparticles (GNPs) and gold nanorods (GNRs), which have been verified as excellent photoacoustic contrast agents, were compared with that of the Pdots based on the multiscale PAI system. Both ex vivo and in vivo experiments demonstrated that the Pdots have better photoacoustic conversion efficiency at 532 nm than GNPs and showed similar photoacoustic performance with GNRs at 700 nm at the same mass concentration. Photostability and toxicity tests demonstrated that the Pdots are photostable and biocompatible. More importantly, an in vivo MSPAI experiment indicated that the Pdots have better photoacoustic performance than the blood and therefore the signals can be accurately extracted from the background of vascular-rich tissues. Our work demonstrates the great potential of Pdots as highly effective contrast agents for the precise localization of lesions relative to the blood vessels based on multiscale PAI and MSPAI.
Kruger, R. A.; Liu, P. Y.; Fang, Y. R.; Appledorn, C. R. Photoacoustic ultrasound (PAUS)—Reconstruction tomography. Med. Phys. 1995, 22, 1605–1609.
Xu, M. H.; Wang, L. V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 041101.
Wang, X. D.; Pang, Y. J.; Ku, G.; Xie, X. Y.; Stoica, G.; Wang, L. V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 2003, 21, 803–806.
Yang, S. H.; Xing, D.; Zhou, Q.; Xiang, L. Z.; Lao, Y. Q. Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography. Med. Phys. 2007, 34, 3294–3301.
Lao, Y. Q.; Xing, D.; Yang, S. H.; Xiang, L. Z. Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth. Phys. Med. Biol. 2008, 53, 4203–4212.
Xi, L.; Li, X. Q.; Yao, L.; Grobmyer, S.; Jiang, H. B. Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography system for breast cancer detection. Med. Phys. 2012, 39, 2584–2594.
Xu, D.; Yang, S. H.; Wang, Y.; Gu, Y.; Xing, D. Noninvasive and high-resolving photoacoustic dermoscopy of human skin. Bio. Opt. Exp. 2016, 7, 2095–2102.
Wang, L. V.; Hu, S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335, 1458–1462.
Taruttis, A.; Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics 2015, 9, 219–227.
Cox, B.; Laufer, J. G.; Arridge, S. R.; Beard, P. C. Quantitative spectroscopic photoacoustic imaging: A review. J. Biomed. Opt. 2012, 17, 061202.
Yuan, Z.; Jiang, H. B. Simultaneous recovery of tissue physiological and acoustic properties and the criteria for wavelength selection in multispectral photoacoustic tomography. Opt. Lett. 2009, 34, 1714–1716.
Razansky, D.; Vinegoni, C.; Ntziachristos, V. Multispectral photoacoustic imaging of fluorochromes in small animals. Opt. Lett. 2007, 32, 2891–2893.
Zhang, J.; Yang, S. H.; Ji, X. R.; Zhou, Q.; Xing, D. Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: Ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation. J. Am. Coll. Cardiol. 2014, 64, 385–390.
Sethuraman, S.; Amirian, J. H.; Litovsky, S. H.; Smalling, R. W.; Emelianov, S. Y. Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques. Opt. Exp. 2008, 16, 3362–3367.
Chen, Z. J.; Yang, S. H.; Xing, D. In vivo detection of hemoglobin oxygen saturation and carboxyhemoglobin saturation with multiwavelength photoacoustic microscopy. Opt. Lett. 2012, 37, 3414–3416.
Gao, D. Y.; Zhang, P. F.; Liu, C. B.; Chen, C.; Gao, G. H.; Wu, Y. Y.; Sheng, Z. H.; Song, L.; Cai, L. T. Compact chelator-free Ni-integrated CuS nanoparticles with tunable near-infrared absorption and enhanced relaxivity for in vivo dual-modal photoacoustic/MR imaging. Nanoscale 2015, 7, 17631–17636.
Nie, L. M.; Chen, M.; Sun, X. L.; Rong, P. F.; Zheng, N. F.; Chen, X. Y. Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging. Nanoscale 2014, 6, 1271–1276.
Ray, A.; Wang, X. D.; Lee, Y.-E. K.; Hah, H. J.; Kim, G.; Chen, T.; Orringer, D. A.; Sagher, O.; Liu, X. J.; Kopelman, R. Targeted blue nanoparticles as photoacoustic contrast agent for brain tumor delineation. Nano Res. 2011, 4, 1163–1173.
Jiang, Y. Y.; Deng, Z. J.; Yang, D.; Deng, X.; Li, Q.; Sha, Y. L.; Li, C. H.; Xu, D. S. Gold nanoflowers for 3D volumetric molecular imaging of tumors by photoacoustic tomography. Nano Res. 2015, 8, 2152–2161.
Bao, C. C.; Conde, J.; Pan, F.; Li, C.; Zhang, C. L.; Tian, F. R.; Liang, S. J.; de la Fuente, J. M.; Cui, D. X. Gold nanoprisms as a hybrid in vivo cancer theranostic platform for in situ photoacoustic imaging, angiography, and localized hyperthermia. Nano Res. 2016, 9, 1043–1056.
Zhou, N.; López-Puente, V.; Wang, Q.; Polavarapu, L.; Pastoriza-Santos, I.; Xu, Q.-H. Plasmon-enhanced light harvesting: Applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Adv. 2015, 5, 29076–29097.
Yuan, Z.; Wu, C. F.; Zhao, H. Z.; Jiang, H. B. Imaging of small nanoparticle-containing objects by finite-element-based photoacoustic tomography. Opt. Lett. 2005, 30, 3054–3056.
Li, W. W.; Chen, X. Y. Gold nanoparticles for photoacoustic imaging. Nanomedicine 2015, 10, 299–320.
Qin, H.; Zhou, T.; Yang, S. H.; Chen, Q.; Xing, D. Gadolinium(Ⅲ)–gold nanorods for MRI and photoacoustic imaging dual-modality detection of macrophages in atherosclerotic inflammation. Nanomedicine 2013, 8, 1611–1624.
Qin, H.; Zhao, Y.; Zhang, J.; Pan, X.; Yang, S. H.; Xing, D. Inflammation-targeted gold nanorods for intravascular photoacoustic imaging detection of matrix metalloproteinase-2 (MMP2) in atherosclerotic plaques. Nanomedicine 2016, 12, 1765–1774.
Zhong, J. P.; Wen, L. W.; Yang, S. H.; Xiang, L. Z.; Chen, Q.; Xing, D. Imaging-guided high-efficient photoacoustic tumor therapy with targeting gold nanorods. Nanomedicine 2015, 11, 1499–1509.
Cho, W.-S.; Cho, M.; Jeong, J.; Choi, M.; Cho, H.-Y.; Han, B. S.; Kim, S. H.; Kim, H. O.; Lim, Y. T.; Chung, B. H. et al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol. 2009, 236, 16–24.
Aillon, K. L.; Xie, Y. M.; El-Gendy, N.; Berkland, C. J.; Forrest, M. L. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev. 2009, 61, 457–466.
Miao, Q. Q.; Lyu, Y.; Ding, D.; Pu, K. Y. Semiconducting oligomer nanoparticles as an activatable photoacoustic probe with amplified brightness for in vivo imaging of PH. Adv. Mater. 2016, 28, 3662–3668.
Liu, J.; Geng, J. L.; Liao, L.-D.; Thakor, N.; Gao, X. H.; Liu, B. Conjugated polymer nanoparticles for photoacoustic vascular imaging. Polym. Chem. 2014, 5, 2854–2862.
Li, K.; Liu, B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 2014, 43, 6570–6597.
Wu, C. F.; Chiu, D. T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem., Int. Ed. 2013, 52, 3086–3109.
Sun, K.; Tang, Y.; Li, Q.; Yin, S. Y.; Qin, W. P.; Yu, J. B.; Chiu, D. T.; Liu, Y. B.; Yuan, Z.; Zhang, X. J. et al. In vivo dynamic monitoring of small molecules with implantable polymer-dot transducer. ACS Nano 2016, 10, 6769–6781.
Kong, K. V.; Liao, L.-D.; Goh, D.; Thakor, N. V.; Olivo, M. Novel biodegradable polymer tethered platinum (Ⅱ) for photoacoustic imaging. Int. J. Nanomed. Nanotechnol. 2014, 5, 223.
Pu, K. Y.; Shuhendler, A. J.; Jokerst, J. V.; Mei, J. G.; Gambhir, S. S.; Bao, Z.; Rao, J. H. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 2014, 9, 233–239.
Lyu, Y.; Fang, Y.; Miao, Q. Q.; Zhen, X.; Ding, D.; Pu, K. Y. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano 2016, 10, 4472–4481.
Lyu, Y.; Xie, C.; Chechetka, S. A.; Miyako, E.; Pu, K. Y. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J. Am. Chem. Soc. 2016, 138, 9049–9052.
Lei, T.; Cao, Y.; Fan, Y. L.; Liu, C.-J.; Yuan, S.-C.; Pei, J. High-performance air-stable organic field-effect transistors: Isoindigo-based conjugated polymers. J. Am. Chem. Soc. 2011, 133, 6099–6101.
Wang, E. G.; Mammo, W.; Andersson, M. R. 25th anniversary article: Isoindigo-based polymers and small molecules for bulk heterojunction solar cells and field effect transistors. Adv. Mater. 2014, 26, 1801–1826.
Wu, C. F.; Bull, B.; Szymanski, C.; Christensen, K.; McNeill, J. Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2008, 2, 2415–2423.
Chen, H. B.; Chang, K. W.; Men, X. J.; Sun, K.; Fang, X. F.; Ma, C.; Zhao, Y. X.; Yin, S. Y.; Qin, W. P.; Wu, C. F. Covalent patterning and rapid visualization of latent fingerprints with photo-cross-linkable semiconductor polymer dots. ACS Appl. Mater. Interfaces 2015, 7, 14477–14484.
Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Preparation and characterization of Au colloid monolayers. Anal. Chem. 1995, 67, 735–743.
Sau, T. K.; Murphy, C. J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414–6420.
American National Standards Institute. American national standard for safe use of lasers. ANSI Z136.1–2007. New York, NY: American National Standards Institute, 2007.
Cavigli, L.; de Angelis, M.; Ratto, F.; Matteini, P.; Rossi, F.; Centi, S.; Fusi, F.; Pini, R. Size affects the stability of the photoacoustic conversion of gold nanorods. J. Phys. Chem. C 2014, 118, 16140–16146.
Liu, Y. B.; Jiang, H. B.; Yuan, Z. Two schemes for quantitative photoacoustic tomography based on Monte Carlo simulation. Med. Phys. 2016, 43, 3987–3997.
Zhang, Q.; Iwakuma, N.; Sharma, P.; Moudgil, B. M.; Wu, C.; McNeill, J.; Jiang, H.; Grobmyer, S. R. Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography. Nanotechnology 2009, 20, 395102.
Agarwal, A.; Huang, S. W.; O'Donnell, M.; Day, K. C.; Day, M.; Kotov, N.; Ashkenazi, S. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys. 2007, 102, 064701.