AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes

Seongdong Lim1Doo-Seung Um1Minjeong Ha1Qianpeng Zhang2Youngsu Lee1Yuanjing Lin2Zhiyong Fan2Hyunhyub Ko1( )
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Show Author Information

Graphical Abstract

Abstract

The development of flexible photodetectors has received great attention for future optoelectronic applications including flexible image sensors, biomedical imaging, and smart, wearable systems. Previously, omnidirectional photodetectors were only achievable by integration of a hemispherical microlens assembly on multiple photodetectors. Herein, a hierarchical photodiode design of ZnO nanowires (NWs) on honeycomb-structured Si (H-Si) membranes is demonstrated to exhibit excellent omnidirectional light-absorption ability and thus maintain high photocurrents over broad spectral ranges (365 to 1,100 nm) for wide incident angles (0° to 70°), which enabled broadband omnidirectional light detection in flexible photodetectors. Furthermore, the stress-relieving honeycomb pattern within the photodiode micromembranes provided photodetectors with excellent mechanical flexibility (10% decrease in photocurrent at a bending radius of 3 mm) and durability (minimal change in photocurrent over 10,000 bending cycles). When employed in semiconductor thin films, the hierarchical NW/honeycomb heterostructure design acts as an efficient platform for various optoelectronic devices requiring mechanical flexibility and broadband omnidirectional light detection.

Electronic Supplementary Material

Download File(s)
nr-10-1-22_ESM.pdf (3.6 MB)

References

1

Nau, S.; Wolf, C.; Sax, S.; List-Kratochvil, E. J. W. Organic non-volatile resistive photo-switches for flexible image detector arrays. Adv. Mater. 2015, 27, 1048–1052.

2

Zhang, L.; Wu, T.; Guo, Y.; Zhao, Y.; Sun, X.; Wen, Y.; Yu, G.; Liu, Y. Large-area, flexible imaging arrays constructed by light-charge organic memories. Sci. Rep. 2013, 3, 1080.

3

Someya, T.; Kato, Y.; Iba, S.; Noguchi, Y.; Sekitani, T.; Kawaguchi, H.; Sakurai, T. Integration of organic FETs with organic photodiodes for a large area, flexible, and lightweight sheet image scanners. IEEE Trans. Electron Devices 2005, 52, 2502–2511.

4

Floreano, D.; Pericet-Camara, R.; Viollet, S.; Ruffier, F.; Bruckner, A.; Leitel, R.; Buss, W.; Menouni, M.; Expert, F.; Juston, R. et al. Miniature curved artificial compound eyes. Proc. Natl. Acad. Sci. USA 2013, 110, 9267–9272.

5

Ko, H. C.; Stoykovich, M. P.; Song, J. Z.; Malyarchuk, V.; Choi, W. M.; Yu, C. J.; Geddes, J. B.; Xiao, J. L.; Wang, S. D.; Huang, Y. G. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008, 454, 748–753.

6

Lee, L. P.; Szema, R. Inspirations from biological optics for advanced photonic systems. Science 2005, 310, 1148–1150.

7

Lochner, C. M.; Khan, Y.; Pierre, A.; Arias, A. C. All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 2014, 5, 5745.

8

Lee, C. M.; Engelbrecht, C. J.; Soper, T. D.; Helmchen, F.; Seibel, E. J. Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging. J. Biophotonics 2010, 3, 385–407.

9

Huang, S. Y.; Guo, C. F.; Zhang, X.; Pan, W.; Luo, X.; Zhao, C. S.; Gong, J. H.; Li, X. Y.; Ren, Z. F.; Wu, H. Buckled tin oxide nanobelt webs as highly stretchable and transparent photosensors. Small 2015, 11, 5712–5718.

10

Gao, Y.; Sim, K.; Sun, S. C.; Chen, Z.; Song, J. Z.; Yu, C. J. Crack-insensitive wearable electronics enabled through high-strength kevlar fabrics. IEEE Trans. Compon., Packag., Manuf. Technol. 2015, 5, 1230–1236.

11

Wang, Z. R.; Wang, H.; Liu, B.; Qiu, W. Z.; Zhang, J.; Ran, S. H.; Huang, H. T.; Xu, J.; Han, H. W.; Chen, D. et al. Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts. ACS Nano 2011, 5, 8412–8419.

12

Rim, Y. S.; Yang, Y. M.; Bae, S. H.; Chen, H. J.; Li, C.; Goorsky, M. S.; Yang, Y. Ultrahigh and broad spectral photodetectivity of an organic–inorganic hybrid phototransistor for flexible electronics. Adv. Mater. 2015, 27, 6885–6891.

13

Pace, G.; Grimoldi, A.; Natali, D.; Sampietro, M.; Coughlin, J. E.; Bazan, G. C.; Caironi, M. All-organic and fully-printed semitransparent photodetectors based on narrow bandgap conjugated molecules. Adv. Mater. 2014, 26, 6773–6777.

14

Jang, S.; Hwang, E.; Lee, Y.; Lee, S.; Cho, J. H. Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals. Nano Lett. 2015, 15, 2542–2547.

15

Sun, Z. H.; Liu, Z. K.; Li, J. H.; Tai, G. A.; Lau, S. P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 2012, 24, 5878–5883.

16

Lee, J. S.; Kovalenko, M. V.; Huang, J.; Chung, D. S.; Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 2011, 6, 348–352.

17

Xie, X. M.; Shen, G. Z. Single-crystalline In2S3 nanowirebased flexible visible-light photodetectors with an ultra-high photoresponse. Nanoscale 2015, 7, 5046–5052.

18

Tian, W.; Zhang, C.; Zhai, T. Y.; Li, S. L.; Wang, X.; Liu, J. W.; Jie, X.; Liu, D. Q.; Liao, M. Y.; Koide, Y. et al. Flexible ultraviolet photodetectors with broad photoresponse based on branched ZnS-ZnO heterostructure nanofilms. Adv. Mater. 2014, 26, 3088–3093.

19

Liu, X.; Gu, L. L.; Zhang, Q. P.; Wu, J. Y.; Long, Y. Z.; Fan, Z. Y. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 2014, 5, 4007.

20

Zheng, W. S.; Xie, T.; Zhou, Y.; Chen, Y. L.; Jiang, W.; Zhao, S. L.; Wu, J. X.; Jing, Y. M.; Wu, Y.; Chen, G. C. et al. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors. Nat. Commun. 2015, 6, 6972.

21

Yuan, X.; Tang, L.; Liu, S. S.; Wang, P.; Chen, Z. G.; Zhang, C.; Liu, Y. W.; Wang, W. Y.; Zou, Y. C.; Liu, C. et al. Arrayed van der Waals vertical heterostructures based on 2D GaSe grown by molecular beam epitaxy. Nano Lett. 2015, 15, 3571–3577.

22

Liu, N.; Tian, H.; Schwartz, G.; Tok, J. B. H.; Ren, T. L.; Bao, Z. Large-area, transparent, and flexible infrared photodetector fabricated using p–n junctions formed by N-doping chemical vapor deposition grown graphene. Nano Lett. 2014, 14, 3702–3708.

23

Tamalampudi, S. R.; Lu, Y. Y.; Kumar, U. R.; Sankar, R.; Liao, C. D.; Moorthy, B. K.; Cheng, C. H.; Chou, F. C.; Chen, Y. T. High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Lett. 2014, 14, 2800–2806.

24

Seo, J.-H.; Oh, T.-Y.; Park, J.; Zhou, W. D.; Ju, B.-K.; Ma, Z. Q. A multifunction heterojunction formed between pentacene and a single-crystal silicon nanomembrane. Adv. Funct. Mater. 2013, 23, 3398–3403.

25

Yuan, H.-C.; Shin, J.; Qin, G. X.; Sun, L.; Bhattacharya, P.; Lagally, M. G.; Celler, G. K.; Ma, Z. Q. Flexible photodetectors on plastic substrates by use of printing transferred singlecrystal germanium membranes. Appl. Phys. Lett. 2009, 94, 013102.

26

Liu, Y. L.; Yu, C. C.; Lin, K. T.; Yang, T. C.; Wang, E. Y.; Chen, H. L.; Chen, L. C.; Chen, K. H. Transparent, broadband, flexible, and bifacial-operable photodetectors containing a large-area graphene-gold oxide heterojunction. ACS Nano 2015, 9, 5093–5103.

27

Hu, X.; Zhang, X. D.; Liang, L.; Bao, J.; Li, S.; Yang, W. L.; Xie, Y. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater. 2014, 24, 7373–7380.

28

Wang, X. F.; Song, W. F.; Liu, B.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. High-performance organic–inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates. Adv. Funct. Mater. 2013, 23, 1202–1209.

29

Manga, K. K.; Wang, J. Z.; Lin, M.; Zhang, J.; Nesladek, M.; Nalla, V.; Ji, W.; Loh, K. P. High-performance broadband photodetector using solution-processible PbSe-TiO2-graphene hybrids. Adv. Mater. 2012, 24, 1697–1702.

30
Hu, K.; Chen, H. Y.; Jiang, M. M.; Teng, F.; Zheng, L. X.; Fang, X. S. Broadband photoresponse enhancement of a high-performance t-Se microtube photodetector by plasmonic metallic nanoparticles. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.201602408.https://doi.org/10.1002/adfm.201602408
31

Chen, H. Y.; Liu, H.; Zhang, Z. M.; Hu, K.; Fang, X. S. Nanostructured photodetectors: From ultraviolet to terahertz. Adv. Mater. 2016, 28, 403–433.

32

Wang, A.; Gill, P.; Molnar, A. Light field image sensors based on the talbot effect. Appl. Opt. 2009, 48, 5897–5905.

33

Martin, N.; Ruiz, J. M. Calculation of the PVmodules angular losses under field conditions by means of an analytical model. Sol. Energy Mater. Sol. Cells 2001, 70, 25–38.

34

Courtial, J.; Oxburgh, S.; Tyc, T. Direct stigmatic imaging with curved surfaces. J. Opt. Soc. Am. A 2015, 32, 478–481.

35

Ko, D.-H.; Tumbleston, J. R.; Henderson, K. J.; Euliss, L. E.; DeSimone, J. M.; Lopez, R.; Samulski, E. T. Biomimetic microlens array with antireflective "moth-eye" surface. Soft Matter 2011, 7, 6404–6407.

36

Jeong, K. H.; Kim, J.; Lee, L. P. Biologically inspired artificial compound eyes. Science 2006, 312, 557–561.

37

Song, Y. M.; Xie, Y. Z.; Malyarchuk, V.; Xiao, J. L.; Jung, I.; Choi, K. J.; Liu, Z. J.; Park, H.; Lu, C. F.; Kim, R. H. et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013, 497, 95–99.

38

Fang, C.-Y.; Liu, Y.-L.; Lee, Y.-C.; Chen, H.-L.; Wan, D.-H.; Yu, C.-C. Nanoparticle stacks with graded refractive indices enhance the omnidirectional light harvesting of solar cells and the light extraction of light-emitting diodes. Adv. Funct. Mater. 2013, 23, 1412–1421.

39

Yan, X.; Poxson, D. J.; Cho, J.; Welser, R. E.; Sood, A. K.; Kim, J. K.; Schubert, E. F. Enhanced omnidirectional photovoltaic performance of solar cells using multiplediscrete-layer tailored- and low-refractive index anti-reflection coatings. Adv. Funct. Mater. 2013, 23, 583–590.

40

Ou, Y. Y.; Zhu, X. L.; Jokubavicius, V.; Yakimova, R.; Mortensen, N. A.; Syv?j?rvi, M.; Xiao, S. S.; Ou, H. Y. Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures. Sci. Rep. 2014, 4, 4662.

41

Lin, Q. F.; Leung, S. F.; Lu, L. F.; Chen, X. Y.; Chen, Z.; Tang, H. N.; Su, W. J.; Li, D. D.; Fan, Z. Y. Inverted nanocone-based thin film photovoltaics with omnidirectionally enhanced performance. ACS Nano 2014, 8, 6484–6490.

42

Lin, H.; Xiu, F.; Fang, M.; Yip, S.; Cheung, H. Y.; Wang, F. Y.; Han, N.; Chan, K. S.; Wong, C. Y.; Ho, J. C. Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting. ACS Nano 2014, 8, 3752–3760.

43

Wu, W. Q.; Feng, H. L.; Rao, H. S.; Xu, Y. F.; Kuang, D. B.; Su, C. Y. Maximizing omnidirectional light harvesting in metal oxide hyperbranched array architectures. Nat. Commun. 2014, 5, 3968.

44

Wang, H. P.; Lin, T. Y.; Hsu, C. W.; Tsai, M. L.; Huang, C. H.; Wei, W. R.; Huang, M. Y.; Chien, Y. J.; Yang, P. C.; Liu, C. W. et al. Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions. ACS Nano 2013, 7, 9325–9335.

45

Wang, H. P.; Lin, T. Y.; Tsai, M. L.; Tu, W. C.; Huang, M. Y.; Liu, C. W.; Chueh, Y. L.; He, J. H. Toward efficient and omnidirectional n-type Si solar cells: Concurrent improvement in optical and electrical characteristics by employing microscale hierarchical structures. ACS Nano 2014, 8, 2959–2969.

46

Wei, W. R.; Tsai, M. L.; Ho, S. T.; Tai, S. H.; Ho, C. R.; Tsai, S. H.; Liu, C. W.; Chung, R. J.; He, J. H. Above-11%-efficiency organic–inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures. Nano Lett. 2013, 13, 3658–3663.

47

Lin, C. A.; Lai, K. Y.; Lien, W. C.; He, J. H. An efficient broadband and omnidirectional light-harvesting scheme employing a hierarchical structure based on a ZnO nanorod/Si3N4-coated Si microgroove on 5-inch single crystalline Si solar cells. Nanoscale 2012, 4, 6520–6526.

48

Manekkathodi, A.; Lu, M. Y.; Wang, C. W.; Chen, L. J. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv. Mater. 2010, 22, 4059–4063.

49

Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B. et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett 2013, 13, 1649–1654.

50

An, X. H.; Liu, F. Z.; Jung, Y. J.; Kar, S. Tunable graphenesilicon heterojunctions for ultrasensitive photodetection. Nano Lett. 2013, 13, 909–916.

51

Qiao, H.; Yuan, J.; Xu, Z. Q.; Chen, C. Y.; Lin, S. H.; Wang, Y. S.; Song, J. C.; Liu, Y.; Khan, Q.; Hoh, H. Y. et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure. ACS Nano 2015, 9, 1886–1894.

52

Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.

53

Zhang, Y. Z.; Liu, T.; Meng, B.; Li, X. H.; Liang, G. Z.; Hu, X. N.; Wang, Q. J. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 2013, 4, 1811.

54

Tang, L. B.; Ji, R. B.; Li, X. M.; Bai, G. X.; Liu, C. P.; Hao, J. H.; Lin, J. Y.; Jiang, H. X.; Teng, K. S.; Yang, Z. B. et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano 2014, 8, 6312–6320.

55

Saran, R.; Nordin, M. N.; Curry, R. J. Facile fabrication of PbS nanocrystal: C60 fullerite broadband photodetectors with high detectivity. Adv. Funct. Mater. 2013, 23, 4149–4155.

56

Tsai, D. S.; Liu, K. K.; Lien, D. H.; Tsai, M. L.; Kang, C. F.; Lin, C. A.; Li, L. J.; He, J. H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013, 7, 3905–3911.

57

Tsai, D. S.; Lin, C. A.; Lien, W. C.; Chang, H. C.; Wang, Y. L.; He, J. H. Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal schottky photodetectors improved by ZnO nanorod arrays. ACS Nano 2011, 5, 7748–7753.

58

Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y. F.; Saykally, R. J.; Yang, P. D. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 2003, 42, 3031–3034.

59

Ko, H.; Zhang, Z. X.; Takei, K.; Javey, A. Hierarchical polymer micropillar arrays decorated with ZnO nanowires. Nanotechnology 2010, 21, 295305.

60

Ha, M.; Lim, S.; Park, J.; Um, D.-S.; Lee, Y.; Ko, H. Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins. Adv. Funct. Mater. 2015, 25, 2841–2849.

61

Kim, H.-K.; Kim, K.-K.; Park, S.-J.; Seong, T.-Y.; Adesida, I. Formation of low resistance nonalloyed Al/Pt ohmic contacts on n-type ZnO epitaxial layer. J. Appl. Phys. 2003, 94, 4225–4227.

62

Huang, C.-Y.; Yang, Y.-J.; Chen, J.-Y.; Wang, C.-H.; Chen, Y.-F.; Hong, L.-S.; Liu, C.-S.; Wu, C.-Y. p-Si nanowires/SiO2/n-ZnO heterojunction photodiodes. Appl. Phys. Lett. 2010, 97, 013503.

63

Ghosh, R.; Basak, D. Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction. Appl. Phys. Lett. 2007, 90, 243106.

64

Hwang, J. D.; Chen, Y. H. Carrier transport mechanism on ZnO nanorods/p-Si heterojunction diodes with various atmospheres annealing hydrothermal seed-layer. Thin Solid Films 2012, 520, 5409–5412.

65

Yakuphanoglu, F.; Caglar, Y.; Caglar, M.; Ilican, S. ZnO/p-Si heterojunction photodiode by sol–gel deposition of nanostructure n-ZnO film on p-Si substrate. Mat. Sci. Semicon. Proc. 2010, 13, 137–140.

66

Klason, P.; Rahman, M. M.; Hu, Q. H.; Nur, O.; Turan, R.; Willander, M. Fabrication and characterization of p-Si/n-ZnO heterostructured junctions. Microelect. J. 2009, 40, 706–710.

67

Mridha, S.; Basak, D. Ultraviolet and visible photoresponse properties of n-ZnO/p-Si heterojunction. J. Appl. Phys. 2007, 101, 083102.

68

Bai, Z. M.; Yan, X. Q.; Chen, X.; Cui, Y.; Lin, P.; Shen, Y. W.; Zhang, Y. Ultraviolet and visible photoresponse properties of a ZnO/Si heterojunction at zero bias. RSC Adv. 2013, 3, 17682–17688.

69

Liao, Q. L.; Liang, M. Y.; Zhang, Z.; Zhang, G. J.; Zhang, Y. Strain-modulation and service behavior of Au–MgO–ZnO ultraviolet photodetector by piezo-phototronic effect. Nano Res. 2015, 8, 3772–3779.

70

Sharma, M.; Pudasaini, P. R.; Ruiz-Zepeda, F.; Elam, D.; Ayon, A. A. Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT: PSS. ACS Appl. Mater. Interfaces 2014, 6, 4356–4363.

71

Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

72

Dhara, S.; Giri, P. K. ZnO nanowire heterostructures: Intriguing photophysics and emerging applications. Rev. Nanosci. Nanotechnol. 2013, 2, 147–170.

73

Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158–160.

74

Zeng, L. H.; Wang, M. Z.; Hu, H.; Nie, B.; Yu, Y. Q.; Wu, C. Y.; Wang, L.; Hu, J. G.; Xie, C.; Liang, F. X. et al. Monolayer graphene/germanium schottky junction as highperformance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces 2013, 5, 9362–9366.

75

Qi, H. X.; Li, Q. S.; Zhao, B.; Zheng, M. M.; Li, X. S.; Zhang, N. Influence of ZnO homobuffer layer on n-ZnO/p-Si photodiode. Mater. Sci. Technol. 2008, 24, 1002–1004.

76

Schubert, E. F. Light-Emitting Diodes, 2nd ed.; Cambridge University Press: Cambridge, UK, 2006.

77

Liu, Y.; Gorla, C. R.; Liang, S.; Emanetoglu, N.; Lu, Y.; Shen, H.; Wraback, M. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD. J. Electron. Mater. 2000, 29, 69–74.

78

Sieg, R. M.; Carlin, J. A.; Boeckl, J. J.; Ringel, S. A.; Currie, M. T.; Ting, S. M.; Langdo, T. A.; Taraschi, G.; Fitzgerald, E. A.; Keyes, B. M. High minority-carrier lifetimes in GaAs grown on low-defect-density Ge/GeSi/Si substrates. Appl. Phys. Lett. 1998, 73, 3111–3113.

79

Ridhuan, N. S.; Razak, K. A.; Lockman, Z.; Abdul Aziz, A. Structural and morphology of ZnO nanorods synthesized using ZnO seeded growth hydrothermal method and its properties as UV sensing. PLoS One 2012, 7, e50405.

80

Chao, Y. C.; Chen, C. Y.; Lin, C. A.; Dai, Y. A.; He, J. H. Antireflection effect of ZnO nanorod arrays. J. Mater. Chem. 2010, 20, 8134–8138.

81

Zhao, J. H.; Wang, A. H.; Green, M. A.; Ferrazza, F. 19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 1998, 73, 1991–1993.

82

Sai, H.; Saito, K.; Kondo, M. Investigation of textured back reflectors with periodic honeycomb patterns in thin-film silicon solar cells for improved photovoltaic performance. IEEE J. Photovolt. 2013, 3, 5–10.

83

Hwang, J. K.; Cho, S.; Dang, J. M.; Kwak, E. B.; Song, K.; Moon, J.; Sung, M. M. Direct nanoprinting by liquidbridge-mediated nanotransfer moulding. Nat. Nanotechnol. 2010, 5, 742–748.

84

Davami, K.; Zhao, L.; Lu, E.; Cortes, J.; Lin, C.; Lilley, D. E.; Purohit, P. K.; Bargatin, I. Ultralight shape-recovering plate mechanical metamaterials. Nat. Commun. 2015, 6, 10019.

85

Takahashi, T.; Takei, K.; Gillies, A. G.; Fearing, R. S.; Javey, A. Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett. 2011, 11, 5408–5413.

Nano Research
Pages 22-36
Cite this article:
Lim S, Um D-S, Ha M, et al. Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes. Nano Research, 2017, 10(1): 22-36. https://doi.org/10.1007/s12274-016-1263-y

740

Views

72

Crossref

N/A

Web of Science

73

Scopus

0

CSCD

Altmetrics

Received: 21 June 2016
Revised: 11 August 2016
Accepted: 26 August 2016
Published: 22 September 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return