Journal Home > Volume 9 , Issue 12

In spite of the recent successful demonstrations of flexible and transparent film heaters, most heaters with high optical transmittance and low applied direct current (DC) voltage are silver nanowire (Ag NW)-based or silver grid-based. In this study, flexible and stretchable copper nanowire (Cu NW)-based transparent film heaters were fabricated through a solution-based process, in which a thin layer of hydrophobic polymers was encapsulated on the Cu NW films. The thin polymer layer protected the films from oxidation under harsh testing conditions, i.e., high temperature, high humidity, and acidic and alkaline environments. The films exhibited remarkable performance, a wide operating temperature range (up to 150 ℃), and a high heating rate (14 ℃/s). Defrosting and wearable thermotherapy demonstrations of the Cu NW film heaters were carried out to investigate their practicality. The Cu NW-based film heaters have potential as reliable and low-cost film heaters.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Transparent heaters based on highly stable Cu nanowire films

Show Author's information Haitao Zhai1,2Ranran Wang1( )Xiao Wang1,2Yin Cheng1,2Liangjing Shi1Jing Sun1( )
The State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050China
University of Chinese Academy of Sciences19 Yuquan RoadBeijing100049China

Abstract

In spite of the recent successful demonstrations of flexible and transparent film heaters, most heaters with high optical transmittance and low applied direct current (DC) voltage are silver nanowire (Ag NW)-based or silver grid-based. In this study, flexible and stretchable copper nanowire (Cu NW)-based transparent film heaters were fabricated through a solution-based process, in which a thin layer of hydrophobic polymers was encapsulated on the Cu NW films. The thin polymer layer protected the films from oxidation under harsh testing conditions, i.e., high temperature, high humidity, and acidic and alkaline environments. The films exhibited remarkable performance, a wide operating temperature range (up to 150 ℃), and a high heating rate (14 ℃/s). Defrosting and wearable thermotherapy demonstrations of the Cu NW film heaters were carried out to investigate their practicality. The Cu NW-based film heaters have potential as reliable and low-cost film heaters.

Keywords: copper nanowires, film heater, transparent conductive film, anti-oxidation, flexible device

References(36)

1

Sorel, S.; Bellet, D.; Coleman, J. N. Relationship between material properties and transparent heater performance for both bulk-like and percolative nanostructured networks. ACS Nano 2014, 8, 4805–4814.

2

Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

3

Bae, J. J.; Lim, S. C.; Han, G. H.; Jo, Y. W.; Doung, D. L.; Kim, E. S.; Chae, S. J.; Huy, T. Q.; Van Luan, N.; Lee, Y. H. Heat dissipation of transparent graphene defoggers. Adv. Funct. Mater. 2012, 22, 4819–4826.

4

Jang, Y.; Kim, J.; Byun, D. Invisible metal-grid transparent electrode prepared by electrohydrodynamic (EHD) jet printing. J. Phys. D: Appl. Phys. 2013, 46, 155103.

5

Yoon, Y. H.; Song, J. -W.; Kim, D.; Kim, J.; Park, J. -K.; Oh, S. -K.; Han, C. -S. Transparent film heater using single-walled carbon nanotubes. Adv. Mater. 2007, 19, 4284–4287.

6

Kang, T. J.; Kim, T.; Seo, S. M.; Park, Y. J.; Kim, Y. H. Thickness-dependent thermal resistance of a transparent glass heater with a single-walled carbon nanotube coating. Carbon 2011, 49, 1087–1093.

7

Jang, H. -S.; Jeon, S. K.; Nahm, S. H. The manufacture of a transparent film heater by spinning multi-walled carbon nanotubes. Carbon 2011, 49, 111–116.

8

Jung, D.; Kim, D.; Lee, K. H.; Overzet, L. J.; Lee, G. S. Transparent film heaters using multi-walled carbon nanotube sheets. Sensor. Actuat. A: Phys. 2013, 199, 176–180.

9

Liu, P.; Zhou, D. L.; Wei, Y.; Jiang, K. L.; Wang, J. P.; Zhang, L.; Li, Q. Q.; Fan, S. S. Load characteristics of a suspended carbon nanotube film heater and the fabrication of a fast-response thermochromic display prototype. ACS Nano 2015, 9, 3753–3759.

10

Sui, D.; Huang, Y.; Huang, L.; Liang, J. J.; Ma, Y. F.; Chen, Y. S. Flexible and transparent electrothermal film heaters based on graphene materials. Small 2011, 7, 3186–3192.

11

Kang, J. M.; Kim, H.; Kim, K. S.; Lee, S. -K.; Bae, S. K.; Ahn, J. -H.; Kim, Y. -J.; Choi, J. -B.; Hong, B. H. High- performance graphene-based transparent flexible heaters. Nano Lett. 2011, 11, 5154–5158.

12

Cheong, H. -G.; Song, D. -W.; Park, J. -W. Transparent film heaters with highly enhanced thermal efficiency using silver nanowires and metal/metal-oxide blankets. Microelectron. Eng. 2015, 146, 11–18.

13

Li, J. P.; Liang, J. J.; Jian, X.; Hu, W.; Li, J.; Pei, Q. B. A flexible and transparent thin film heater based on a silver nanowire/heat-resistant polymer composite. Macromol. Mater. Eng. 2014, 299, 1403–1409.

14

Huang, Q. J.; Shen, W. F.; Fang, X. Z.; Chen, G. F.; Guo, J. C.; Xu, W.; Tan, R. Q.; Song, W. J. Highly flexible and transparent film heaters based on polyimide films embedded with silver nanowires. RSC Adv. 2015, 5, 45836–45842.

15

Woo, J. S.; Han, J. T.; Jung, S.; Jang, J. I.; Kim, H. Y.; Jeong, H. J.; Jeong, S. Y.; Baeg, K. J.; Lee, G. W. Electrically robust metal nanowire network formation by in-situ interconnection with single-walled carbon nanotubes. Sci. Rep. 2014, 4, 4804.

16

Kim, A. Y.; Kim, M. K.; Hudaya, C.; Park, J. H.; Byun, D.; Lim, J. C.; Lee, J. K. Oxidation-resistant hybrid metal oxides/metal nanodots/silver nanowires for high performance flexible transparent heaters. Nanoscale 2016, 8, 3307–3313.

17

Zhang, X.; Yan, X. B.; Chen, J. T.; Zhao, J. P. Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters. Carbon 2014, 69, 437–443.

18

Ji, S. L.; He, W. W.; Wang, K.; Ran, Y. X.; Ye, C. H. Thermal response of transparent silver nanowire/PEDOT: PSS film heaters. Small 2014, 10, 4951–4960.

19

Chen, J. Y.; Chen, J.; Li, Y.; Zhou, W. X.; Feng, X. M.; Huang, Q. L.; Zheng, J. G.; Liu, R. Q.; Ma, Y. W.; Huang, W. Enhanced oxidation-resistant Cu-Ni core–shell nanowires: Controllable one-pot synthesis and solution processing to transparent flexible heaters. Nanoscale 2015, 7, 16874–16879.

20

An, B. W.; Gwak, E. -J.; Kim, K.; Kim, Y. -C.; Jang, J.; Kim, J. -Y.; Park, J. -U. Stretchable, transparent electrodes as wearable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability. Nano Lett. 2016, 16, 471–478.

21

Stewart, I. E.; Rathmell, A. R.; Yan, L.; Ye, S. R.; Flowers, P. F.; You, W.; Wiley, B. J. Solution-processed copper-nickel nanowire anodes for organic solar cells. Nanoscale 2014, 6, 5980–5988.

22

Zhang, D. Q.; Wang, R. R.; Wen, M. C.; Weng, D.; Cui, X.; Sun, J.; Li, H. X.; Lu, Y. F. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J. Am. Chem. Soc. 2012, 134, 14283–14286.

23

Rathmell, A. R.; Bergin, S. M.; Hua, Y. -L.; Li, Z. -Y.; Wiley, B. J. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv. Mater. 2010, 22, 3558–3563.

24

Zhai, H. T.; Wang, R. R.; Wang, W. Q.; Wang, X.; Cheng, Y.; Shi, L. J.; Liu, Y. Q.; Sun, J. Novel fabrication of copper nanowire/cuprous oxidebased semiconductor-liquid junction solar cells. Nano Res. 2015, 8, 3205–3215.

25

Wang, X.; Wang, R. R.; Shi, L. J.; Sun, J. Synthesis of metal/bimetal nanowires and their applications as flexible transparent electrodes. Small 2015, 11, 4737–4744.

26

Song, J. Z.; Li, J. H.; Xu, J. Y.; Zeng, H. B. Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics. Nano Lett. 2014, 14, 6298–6305.

27

Luo, X. X.; Gelves, G. A.; Sundararaj, U.; Luo, J. -L. Silver- coated copper nanowires with improved anti-oxidation property as conductive fillers in low-density polyethylene. Can. J. Chem. Eng. 2013, 91, 630–637.

28

Chen, Z. F.; Ye, S. R.; Stewart, I. E.; Wiley, B. J. Copper nanowire networks with transparent oxide shells that prevent oxidation without reducing transmittance. ACS Nano 2014, 8, 9673–9679.

29

Deng, B.; Hsu, P. -C.; Chen, G. C.; Chandrashekar, B. N.; Liao, L.; Ayitimuda, Z.; Wu, J. X.; Guo, Y. F.; Lin, L.; Zhou, Y. et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett. 2015, 15, 4206–4213.

30

Ahn, Y.; Jeong, Y.; Lee, D.; Lee, Y. Copper nanowire– graphene core–shell nanostructure for highly stable transparent conducting electrodes. ACS Nano 2015, 9, 3125–3133.

31

Shi, L. J.; Wang, R. R.; Zhai, H. T.; Liu, Y. Q.; Gao, L.; Sun, J. A long-term oxidation barrier for copper nanowires: Graphene says yes. Phys. Chem. Chem. Phys. 2015, 17, 4231–4236.

32

Hong, S.; Lee, H.; Lee, J.; Kwon, J.; Han, S.; Suh, Y. D.; Cho, H.; Shin, J.; Yeo, J.; Ko, S. H. Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv. Mater. 2015, 27, 4744–4751.

33

Wang, R. R.; Zhai, H. T.; Wang, T.; Wang, X.; Cheng, Y.; Shi, L. J.; Sun, J. Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors. Nano Res. 2016, 9, 2138–2148.

34

Sellinger, A. T.; Wang, D. H.; Tan, L. -S.; Vaia, R. A. Electrothermal polymer nanocomposite actuators. Adv. Mater. 2010, 22, 3430–3435.

35

Lee, S. M.; Lee, J. H.; Bak, S.; Lee, K.; Li, Y.; Lee, H. Hybrid windshield-glass heater for commercial vehicles fabricated via enhanced electrostatic interactions among a substrate, silver nanowires, and an over-coating layer. Nano Res. 2015, 8, 1882–1892.

36

Choi, S.; Park, J.; Hyun, W.; Kim, J.; Kim, J.; Lee, Y. B.; Song, C.; Hwang, H. J.; Kim, J. H.; Hyeon, T. et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 2015, 9, 6626–6633.

File
nr-9-12-3924_ESM.pdf (515.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 July 2016
Revised: 19 August 2016
Accepted: 22 August 2016
Published: 20 September 2016
Issue date: December 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was financially supported by the National Basic Research Program of China (No. 2012CB932303), the National Natural Science Foundation of China (No. 61301036), Shanghai Municipal Natural Science Foundation (Nos. 13ZR1463600 and 13XD1403900), Youth Innovation Promotion Association CAS (No. 2014226), and the Shanghai Key Basic Research Project (No. 16JC1402300).

Return