Journal Home > Volume 9 , Issue 12

Cost-effective catalysts for the oxidation of volatile organic compounds (VOCs) are critical to energy conversion applications and environmental protection. The main bottleneck of this process is the development of an efficient, stable, and cost-effective catalyst that can oxidize HCHO at low temperature. Here, an advanced material consisting of manganese cobalt oxide nanosheet arrays uniformly covered on a carbon textile is successfully fabricated by a simple anodic electrodeposition method combined with post annealing treatment, and can be directly applied as a high-performance catalytic material for HCHO elimination. Benefiting from the increased surface oxygen species and improved redox properties, the as-prepared manganese cobalt oxide nanosheets showed substantially higher catalytic activity for HCHO oxidation. The catalyst completely converted HCHO to CO2 at temperatures as low as 100 ℃, and exhibited excellent catalytic stability. Such impressive results are rarely achieved by non-precious metal-based catalysts at such low temperatures.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A highly durable catalyst based on CoxMn3–xO4 nanosheets for low-temperature formaldehyde oxidation

Show Author's information Yongchao Huang1,§Kaihang Ye2,§Haibo Li1Wenjie Fan1Fengyi Zhao1Yuanming Zhang2( )Hongbing Ji1( )
MOE of the Key Laboratory of Bioinorganic and Synthetic ChemistryKLGHEI of Environment and Energy ChemistryThe Key Lab of Low-carbon Chemistry and Energy Conservation of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSun Yat-Sen UniversityGuangzhou510275China
Country Department of ChemistryJinan UniversityGuangzhou510632China

§ These authors contributed equally to this work.

Abstract

Cost-effective catalysts for the oxidation of volatile organic compounds (VOCs) are critical to energy conversion applications and environmental protection. The main bottleneck of this process is the development of an efficient, stable, and cost-effective catalyst that can oxidize HCHO at low temperature. Here, an advanced material consisting of manganese cobalt oxide nanosheet arrays uniformly covered on a carbon textile is successfully fabricated by a simple anodic electrodeposition method combined with post annealing treatment, and can be directly applied as a high-performance catalytic material for HCHO elimination. Benefiting from the increased surface oxygen species and improved redox properties, the as-prepared manganese cobalt oxide nanosheets showed substantially higher catalytic activity for HCHO oxidation. The catalyst completely converted HCHO to CO2 at temperatures as low as 100 ℃, and exhibited excellent catalytic stability. Such impressive results are rarely achieved by non-precious metal-based catalysts at such low temperatures.

Keywords: mechanism, formaldehyde, CoxMn3–xO4 nanosheet, catalytic oxidation

References(38)

1

Bai, B. Y.; Li, J. H. Positive effects of K+ ions on three- dimensional mesoporous Ag/Co3O4 catalyst for HCHO oxidation. ACS Catal. 2014, 4, 2753–2762.

2

Fan, W. J.; Li, H. B.; Zhao, F. Y.; Xiao, X. J.; Huang, Y. C.; Ji, H. B; Tong, Y. X. Boosting the photocatalytic performance of (001) BiOI: Enhancing donor density and separation efficiency of photogenerated electrons and holes. Chem. Commun. 2016, 52, 5316–5319.

3

Huang, H. B.; Xu, Y.; Feng, Q. Y.; Leung, D. Y. C. Low temperature catalytic oxidation of volatile organic compounds: A review. Catal. Sci. Technol. 2015, 5, 2649–2669.

4

Qi, J.; Chen, J.; Li, G. D.; Li, S. X.; Gao, Y.; Tang, Z. Y. Facile synthesis of core-shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation. Energy Environ. Sci. 2012, 5, 8937–8941.

5

Xu, Q. L.; Lei, W. Y.; Li, X. Y.; Qi, X. Y.; Yu, J. G.; Liu, G.; Wang, J. L.; Zhang, P. Y. Efficient removal of formaldehyde by nanosized gold on well-defined CeO2 nanorods at room temperature. Environ. Sci. Technol. 2014, 48, 9702–9708.

6

Zhang, C. B.; Liu, F. D.; Zhai, Y. P.; Ariga, H.; Yi, N.; Liu, Y. C.; Asakura, K.; Flytzani-Stephanopoulos, M.; He, H. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures. Angew. Chem., Int. Ed. 2012, 51, 9628–9632.

7

Huang, Y. C.; Li, H. B.; Balogun, M. S.; Yang, H.; Tong, Y. X.; Lu, X. H.; Ji, H. B. Three-dimensional TiO2/CeO2 nanowire composite for efficient formaldehyde oxidation at low temperature. RSC Adv. 2015, 5, 7729–7733.

8

Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 2012, 5, 6352–6357.

9

Xu, Z. H.; Yu, J. G.; Low, J. X.; Jaroniec, M. Microemulsion- assisted synthesis of mesoporous aluminum oxyhydroxide nanoflakes for efficient removal of gaseous formaldehyde. ACS Appl. Mater. Interfaces 2014, 6, 2111–2117.

10

Chen, H. M.; He, J. H.; Zhang, C. B.; He, H. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde. J. Phys. Chem. C 2007, 111, 18033–18038.

11

Zhang, J. H.; Li, Y. B.; Wang, L.; Zhang, C. B.; He, H. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures. Catal. Sci. Technol. 2015, 5, 2305–2313.

12

Yao, X. J.; Xiong, Y.; Zou, W. X.; Zhang, L.; Wu, S. G.; Dong, X.; Gao, F.; Deng, Y.; Tang, C. J.; Chen, Z. et al. Correlation between the physicochemical properties and catalytic performances of CexSn1–xO2 mixed oxides for NO reduction by CO. Appl. Catal. B: Environ. 2014, 144, 152– 165.

13

Hu, L. H.; Sun, K. Q.; Peng, Q.; Xu, B. Q.; Li, Y. D. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res. 2010, 3, 363–368.

14

Huang, H. B.; Leung, D. Y. C. Complete oxidation of formaldehyde at room temperature using TiO2 supported metallic Pd nanoparticles. ACS Catal. 2011, 1, 348–354.

15

Chen, B. B.; Shi, C.; Crocker, M.; Wang, Y.; Zhu, A. M. Catalytic removal of formaldehyde at room temperature over supported gold catalysts. Appl. Catal. B: Environ. 2013, 132-133, 245–255.

16

Zhang, C. X.; Li, S. R.; Wang, T.; Wu, G. W.; Ma, X. B.; Gong, J. L. Pt-based core–shell nanocatalysts with enhanced activity and stability for CO oxidation. Chem. Commun. 2013, 49, 10647–10649.

17

Ma, Z.; Dai, S. Development of novel supported gold catalysts: A materials perspective. Nano Res. 2011, 4, 3–32.

18

Liu, J. F.; Chen, W.; Liu, X. W.; Zhou, K. B.; Li, Y. D. Au/LaVO4 nanocomposite: Preparation, characterization, and catalytic activity for CO oxidation. Nano Res. 2008, 1, 46–55.

19

Bai, B. Y.; Arandiyan, H.; Li, J. H. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts. Appl. Catal. B: Environ. 2013, 142–143, 677–683.

20

Liotta, L. F.; Ousmane, M.; Di Carlo, G.; Pantaleo, G.; Deganello, G.; Marcì, G.; Retailleau, L.; Giroir-Fendler, A. Total oxidation of propene at low temperature over Co3O4– CeO2 mixed oxides: Role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity. Appl. Catal. A: Gen. 2008, 347, 81–88.

21

Zhen, J. M.; Wang, X.; Liu, D. P.; Wang, Z.; Li, J. Q.; Wang, F.; Wang, Y. H.; Zhang, H. J. Mass production of Co3O4@CeO2 core@shell nanowires for catalytic CO oxidation. Nano Res. 2015, 8, 1944–1955.

22

Shi, C.; Wang, Y.; Zhu, A. M.; Chen, B. B.; Au, C. MnxCo3−xO4 solid solution as high-efficient catalysts for low-temperature oxidation of formaldehyde. Catal. Commun. 2012, 28, 18–22.

23

Wang, Y.; Zhu, X. B.; Crocker, M.; Chen, B. B.; Shi, C. A comparative study of the catalytic oxidation of HCHO and CO over Mn0.75Co2.25O4 catalyst: The effect of moisture. Appl. Catal. B: Environ. 2014, 160–161, 542–551.

24

Huang, Y. C.; Fan, W. J.; Long, B.; Li, H. B.; Qiu, W. T.; Zhao, F. Y.; Tong, Y. X.; Ji, H. B. Alkali-modified non-precious metal 3D-NiCo2O4 nanosheets for efficient formaldehyde oxidation at low temperature. J. Mater. Chem. A 2016, 4, 3648–3654.

25

Maliyekkal, S. M.; Lisha, K. P.; Pradeep, T. A novel cellulose–manganese oxide hybrid material by in situ soft chemical synthesis and its application for the removal of Pb(Ⅱ) from water. J. Hazard. Mater. 2010, 181, 986–995.

26

Subramanian, V.; Zhu, H. W.; Wei, B. Q. Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte. Chem. Phys. Lett. 2008, 453, 242–249.

27

Balogun, M. -S.; Qiu, W. T.; Lyu, F. Y.; Luo, Y.; Meng, H.; Li, J. T.; Mai, W. J.; Mai, L. Q.; Tong, Y. X. All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy 2016, 26, 446–455.

28

Quiroz, J.; Giraudon, J. -M.; Gervasini, A.; Dujardin, C.; Lancelot, C.; Trentesaux, M.; Lamonier, J. F. Total oxidation of formaldehyde over MnOx-CeO2 catalysts: The effect of acid treatment. ACS Catal. 2015, 5, 2260–2269.

29

Huang, Y. C.; Long, B.; Tang, M. N.; Rui, Z. B.; Balogun, M. S.; Tong, Y. X.; Ji, H. B. Bifunctional catalytic material: An ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Appl. Catal. B: Environ. 2016, 181, 779–787.

30

Ren, Z.; Botu, V.; Wang, S. B.; Meng, Y. T.; Song, W. Q.; Guo, Y. B.; Ramprasad, R.; Suib, S. L.; Gao, P. X. Monolithically integrated spinel MxCo3−xO4 (M = Co, Ni, Zn) nanoarray catalysts: Scalable synthesis and cation manipulation for tunable low-temperature CH4 and CO oxidation. Angew. Chem., Int. Ed. 2014, 53, 7223–7227.

31

Li, H. F.; Zhang, N.; Chen, P.; Luo, M. F.; Lu, J. Q. High surface area Au/CeO2 catalysts for low temperature formaldehyde oxidation. Appl. Catal. B: Environ. 2011, 110, 279– 285.

32

McCarty, J. G.; Wise, H. Perovskite catalysts for methane combustion. Catal. Today 1990, 8, 231–248.

33

Li, J. H.; Fu, H. J.; Fu, L. X.; Hao, J. M. Complete combustion of methane over indium tin oxides catalysts. Environ. Sci. Technol. 2006, 40, 6455–6459.

34

Tang, X. F.; Li, Y. G.; Huang, X. M.; Xu, Y. D.; Zhu, H. Q.; Wang, J. G.; Shen, W. J. MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature. Appl. Catal. B: Environ. 2006, 62, 265–273.

35

Torres, J. Q.; Giraudon, J. M.; Lamonier, J. F. Formaldehyde total oxidation over mesoporous MnOx catalysts. Catal. Today 2011, 176, 277–280.

36

Wen, Y. R.; Tang, X.; Li, J. H.; Hao, J. M.; Wei, L. S.; Tang, X. F. Impact of synthesis method on catalytic performance of MnOx–SnO2 for controlling formaldehyde emission. Catal. Commun. 2009, 10, 1157–1160.

37

Zhou, L.; He, J. H.; Zhang, J.; He, Z. C.; Hu, Y. C.; Zhang, C. B.; He, H. Facile in-situ synthesis of manganese dioxide nanosheets on cellulose fibers and their application in oxidative decomposition of formaldehyde. J. Phys. Chem. C 2011, 115, 16873–16878.

38

Shen, Y. N.; Yang, X. Z.; Wang, Y. Z.; Zhang, Y. B.; Zhu, H. Y.; Gao, L.; Jia, M. L. The states of gold species in CeO2 supported gold catalyst for formaldehyde oxidation. Appl. Catal. B: Environ. 2008, 79, 142–148.

File
nr-9-12-3881_ESM.pdf (900.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 June 2016
Revised: 27 July 2016
Accepted: 21 August 2016
Published: 14 September 2016
Issue date: December 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was preliminarily supported by the National Natural Science Foundation of China (Nos. 21425627 and 21276104) and Natural Science Foundation of Guangdong Province (Nos. 21425627).

Return