Journal Home > Volume 9 , Issue 12

Single-atom catalysts are of great interest and importance for designing new high-performance low-cost catalysts. We investigated CO oxidation catalyzed by single gold atoms supported on thoria (Au/ThO2) and doped ThO2 using density functional theory with Hubbard-type on-site Coulomb interaction (DFT + U). The calculation results show that the Au-doped ThO2(111) catalyst exhibits remarkable catalytic activity for CO oxidation via the Eley–Rideal mechanism in three steps, where the rate-determining step is decomposition of the OCOO* intermediate with an energy barrier of 0.58 eV. Moreover, our results also reveal a new mechanism of CO oxidation on a gold adatom supported by ThO2(111), where O2 is adsorbed only at the Th site on the surface, and the gas-phase CO then reacts directly with the activated O2* to form CO2, which is the rate-limiting step, with a barrier of 0.46 eV. It is found that CO oxidation can occur without CO and O2 coadsorption on Au, which was previously considered a key intermediate. Therefore, these results provide new insights into CO oxidation on isolated gold atoms supported by the 5f-element compound ThO2(111). This mechanism can help clarify the catalytic cycle of CO oxidation, support the design of high-performance low-cost catalysts, and elucidate the redox properties of actinide oxides.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

New mechanistic pathways for CO oxidation catalyzed by single-atom catalysts: Supported and doped Au1/ThO2

Show Author's information Bo Long1,2Yan Tang1Jun Li1( )
Department of Chemistry and Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of EducationTsinghua UniversityBeijing100084China
College of Information EngineeringGuizhou Minzu UniversityGuiyang550025China

Abstract

Single-atom catalysts are of great interest and importance for designing new high-performance low-cost catalysts. We investigated CO oxidation catalyzed by single gold atoms supported on thoria (Au/ThO2) and doped ThO2 using density functional theory with Hubbard-type on-site Coulomb interaction (DFT + U). The calculation results show that the Au-doped ThO2(111) catalyst exhibits remarkable catalytic activity for CO oxidation via the Eley–Rideal mechanism in three steps, where the rate-determining step is decomposition of the OCOO* intermediate with an energy barrier of 0.58 eV. Moreover, our results also reveal a new mechanism of CO oxidation on a gold adatom supported by ThO2(111), where O2 is adsorbed only at the Th site on the surface, and the gas-phase CO then reacts directly with the activated O2* to form CO2, which is the rate-limiting step, with a barrier of 0.46 eV. It is found that CO oxidation can occur without CO and O2 coadsorption on Au, which was previously considered a key intermediate. Therefore, these results provide new insights into CO oxidation on isolated gold atoms supported by the 5f-element compound ThO2(111). This mechanism can help clarify the catalytic cycle of CO oxidation, support the design of high-performance low-cost catalysts, and elucidate the redox properties of actinide oxides.

Keywords: CO oxidation, single gold catalysis, catalytic mechanism, actinide oxides

References(112)

1

Petit, L.; Svane, A.; Szotek, Z.; Temmerman, W. M. First- principles calculations of PuOx. Science 2003, 301, 498– 501.

2

Korzhavyi, P. A.; Vitos, L.; Andersson, D. A.; Johansson, B. Oxidation of plutonium dioxide. Nat. Mater. 2004, 3, 225– 228.

3

Haschke, J. M.; Allen, T. H.; Morales, L. A. Reaction of plutonium dioxide with water: Formation and properties of PuO2+x. Science 2000, 287, 285–287.

4

Wickleder, M. S.; Fourest, B.; Dorhout, P. K. Thorium. In The Chemistry of the Actinide and Transactinide Elements; Morss, L.; Edelstein, N.; Fuger, J., Eds.; Springer: Netherlands, 2006; pp 52–160.

5

Katz, J. J.; Morss, L. R.; Edelstein, N. M.; Fuger, J. Introduction. In The Chemistry of the Actinide and Transactinide Elements; Morss, L. R.; Edelstein, N.; Fuger, J.; Katz, J. J., Eds.; Springer: Netherlands, 2011; pp 1–17.

6

Hania, P. R.; Klaassen, F. C. 3. 04 - Thorium oxide fuel. In Comprehensive Nuclear Materials; Konings, R. J. M., Ed.; Elsevier: Oxford, 2012; pp 87–108.

7

Kandan, R.; Babu, R.; Manikandan, P.; Venkata Krishnan, R.; Nagarajan, K. Calorimetric measurements on (U, Th)O2 solid solutions. J. Nucl. Mater. 2009, 384, 231–235.

8

Tabakova, T.; Idakiev, V.; Tenchev, K.; Boccuzzi, F.; Manzoli, M.; Chiorino, A. Pure hydrogen production on a new gold–thoria catalyst for fuel cell applications. Appl. Catal. B 2006, 63, 94–103.

9

Jacobs, G.; Patterson, P. M.; Graham, U. M.; Crawford, A. C.; Dozier, A.; Davis, B. H. Catalytic links among the water–gas shift, water-assisted formic acid decomposition, and methanol steam reforming reactions over Pt-promoted thoria. J. Catal. 2005, 235, 79–91.

10

Jacobs, G.; Crawford, A.; Williams, L.; Patterson, P. M.; Davis, B. H. Low temperature water–gas shift: Comparison of thoria and ceria catalysts. Appl. Catal. A 2004, 267, 27–33.

11

Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 ℃. Chem. Lett. 1987, 16, 405–408.

12

Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309.

13

Liu, Z. -P.; Jenkins, S. J.; King, D. A. Role of nanostructured dual-oxide supports in enhanced catalytic activity: Theory of CO oxidation over Au/IrO2/TiO2. Phys. Rev. Lett. 2004, 93, 156102.

14

Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650.

15

Schubert, M. M.; Hackenberg, S.; van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J. CO oxidation over supported gold catalysts—"Inert" and "active" support materials and their role for the oxygen supply during reaction. J. Catal. 2001, 197, 113–122.

16

Yoon, B.; Häkkinen, H.; Landman, U.; Wörz, A. S.; Antonietti, J. -M.; Abbet, S.; Judai, K.; Heiz, U. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 2005, 307, 403–407.

17

Molina, L. M.; Hammer, B. Active role of oxide support during CO oxidation at Au/MgO. Phys. Rev. Lett. 2003, 90, 206102.

18

Molina, L. M.; Hammer, B. Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100). Phys. Rev. B 2004, 69, 155424.

19

Sanchez, A.; Abbet, S.; Heiz, U.; Schneider, W. D.; Häkkinen, H.; Barnett, R. N.; Landman, U. When gold is not noble: Nanoscale gold catalysts. J. Phys. Chem. A 1999, 103, 9573–9578.

20

Zhang, X.; Wang, H.; Xu, B. -Q. Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation. J. Phys. Chem. B 2005, 109, 9678–9683.

21

Wang, C. -M.; Fan, K. -N.; Liu, Z. -P. Origin of oxide sensitivity in gold-based catalysts: A first principle study of CO oxidation over Au supported on monoclinic and tetragonal ZrO2. J. Am. Chem. Soc. 2007, 129, 2642–2647.

22

Comotti, M.; Li, W. -C.; Spliethoff, B.; Schüth, F. Support effect in high activity gold catalysts for CO oxidation. J. Am. Chem. Soc. 2006, 128, 917–924.

23

Casaletto, M. P.; Longo, A.; Martorana, A.; Prestianni, A.; Venezia, A. M. XPS study of supported gold catalysts: The role of Au0 and Au+δ species as active sites. Surf. Interface Anal. 2006, 38, 215–218.

24

Uchiyama, T.; Yoshida, H.; Kuwauchi, Y.; Ichikawa, S.; Shimada, S.; Haruta, M.; Takeda, S. Systematic morphology changes of gold nanoparticles supported on CeO2 during CO oxidation. Angew. Chem. 2011, 123, 10339–10342.

25

Venezia, A. M.; Pantaleo, G.; Longo, A.; Di Carlo, G.; Casaletto, M. P.; Liotta, F. L.; Deganello, G. Relationship between structure and CO oxidation activity of ceria-supported gold catalysts. J. Phys. Chem. B 2005, 109, 2821–2827.

26

Huang, X. -S.; Sun, H.; Wang, L. -C.; Liu, Y. -M.; Fan, K. -N.; Cao, Y. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation. Appl. Catal. B 2009, 90, 224–232.

27

Kim, H. Y.; Lee, H. M.; Henkelman, G. CO oxidation mechanism on CeO2-supported Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 1560–1570.

28

Chen, S. L.; Luo, L. F.; Jiang, Z. Q.; Huang, W. X. Size- dependent reaction pathways of low-temperature CO oxidation on Au/CeO2 catalysts. ACS Catal. 2015, 5, 1653–1662.

29

Haruta, M. Spiers memorial lecture: Role of perimeter interfaces in catalysis by gold nanoparticles. Faraday Discuss. 2011, 152, 11–32.

30

Meyer, R.; Lemire, C.; Shaikhutdinov, S. K.; Freund, H. J. Surface chemistry of catalysis by gold. Gold Bull. 2004, 37, 72–124.

31

Grunwaldt, J. -D.; Kiener, C.; Wögerbauer, C.; Baiker, A. Preparation of supported gold catalysts for low-temperature CO oxidation via "size-controlled" gold colloids. J. Catal. 1999, 181, 223–232.

32

Lopez, N.; Janssens, T. V. W.; Clausen, B. S.; Xu, Y.; Mavrikakis, M.; Bligaard, T.; Nørskov, J. K. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 2004, 223, 232–235.

33

Bond, G.; Thompson, D. Gold-catalysed oxidation of carbon monoxide. Gold Bull. 2000, 33, 41–50.

34

Bond, G. C.; Thompson, D. T. Catalysis by gold. Catal. Rev. 1999, 41, 319–388.

35

Haruta, M. Size-and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166.

36

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

37

Yang, X. -F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

38

Li, F. Y.; Li, Y. F.; Zeng, X. C.; Chen, Z. F. Exploration of High-performance single-atom catalysts on support M1/FeOx for CO oxidation via computational study. ACS Catal. 2015, 5, 544–552.

39

Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

40

Fang, H. -C.; Li, Z. H.; Fan, K. -N. CO oxidation catalyzed by a single gold atom: Benchmark calculations and the performance of DFT methods. Phys. Chem. Chem. Phys. 2011, 13, 13358–13369.

41

Moses-DeBusk, M.; Yoon, M.; Allard, L. F.; Mullins, D. R.; Wu, Z. L.; Yang, X. F.; Veith, G.; Stocks, G. M.; Narula, C. K. CO oxidation on supported single Pt atoms: Experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 2013, 135, 12634–12645.

42

Lin, J.; Wang, A. Q.; Qiao, B. T.; Liu, X. Y.; Yang, X. F.; Wang, X. D.; Liang, J. X.; Li, J.; Liu, J. Y.; Zhang, T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317.

43

Bruix, A.; Lykhach, Y.; Matolínová, I.; Neitzel, A.; Skála, T.; Tsud, N.; Vorokhta, M.; Stetsovych, V.; Ševčíková, K.; Mysliveček, J. et al. Maximum noble-metal efficiency in catalytic materials: Atomically dispersed surface platinum. Angew. Chem., Int. Ed. 2014, 53, 10525–10530.

44

Novotný, Z.; Argentero, G.; Wang, Z. M.; Schmid, M.; Diebold, U.; Parkinson, G. S. Ordered array of single adatoms with remarkable thermal stability: Au/Fe3O4(001). Phys. Rev. Lett. 2012, 108, 216103.

45

Abbet, S.; Heiz, U.; Häkkinen, H.; Landman, U. CO oxidation on a single Pd atom supported on magnesia. Phys. Rev. Lett. 2001, 86, 5950–5953.

46

Liang, J. -X.; Lin, J.; Yang, X. -F.; Wang, A. -Q.; Qiao, B. -T.; Liu, J. Y.; Zhang, T.; Li, J. Theoretical and experimental investigations on single-atom catalysis: Ir1/FeOx for CO oxidation. J. Phys. Chem. C 2014, 118, 21945–21951.

47

Liang, J. -X.; Yang, X. -F.; Wang, A. -Q.; Zhang, T.; Li, J. Theoretical investigations of non-noble metal single-atom catalysis: Ni1/FeOx for CO oxidation. Catal. Sci. Technol., in press, DOI: 10.1039/C6CY00672H.

48

Qiao, B. T.; Liang, J. -X.; Wang, A. Q.; Xu, C. -Q.; Li, J.; Zhang, T.; Liu, J. J. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 2015, 8, 2913–2924.

49

Qiao, B. T.; Liu, J. X.; Wang, Y. -G.; Lin, Q. Q.; Liu, X. Y.; Wang, A. Q.; Li, J.; Zhang, T.; Liu, J. Y. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal. 2015, 5, 6249–6254.

50

Wang, Y. -G.; Mei, D. H.; Glezakou, V. -A.; Li, J.; Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 2015, 6, 6511.

51

Camellone, M. F.; Fabris, S. Reaction mechanisms for the CO oxidation on Au/CeO2 catalysts: Activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms. J. Am. Chem. Soc. 2009, 131, 10473–10483.

52

Hutchings, G. J.; Hall, M. S.; Carley, A. F.; Landon, P.; Solsona, B. E.; Kiely, C. J.; Herzing, A.; Makkee, M.; Moulijn, J. A.; Overweg, A. et al. Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide- supported gold. J. Catal. 2006, 242, 71–81.

53

Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938.

54

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

55

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

56

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple[Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396.

57

Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509.

58

Xiao, H. Y.; Weber, W. J. Oxygen vacancy formation and migration in CexTh1–xO2 solid solution. J. Phys. Chem. B 2011, 115, 6524–6533.

59

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

60

Feynman, R. P. Forces in molecules. Phys. Rev. 1939, 56, 340–343.

61

Jónsson, H.; Mills, G.; Jacobsen, K. W. Nudged elastic band method for finding minimum energy paths of transitions. In Classical and Quantum Dynamics in Condensed Phase Simulations; World Scientific Publishing: Singapore, 1998; pp 385–404.

62

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

63

Henkelman, G.; Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 1999, 111, 7010–7022.

64

Staun Olsen, J.; Gerward, L.; Kanchana, V.; Vaitheeswaran, G. The bulk modulus of ThO2—An experimental and theoretical study. J. Alloys Compd. 2004, 381, 37–40.

65

Grau-Crespo, R.; Hernández, N. C.; Sanz, J. F.; de Leeuw, N. H. Redox properties of gold-substituted zirconia surfaces. J. Mater. Chem. 2009, 19, 710–717.

66

Carrasco, J.; Lopez, N.; Illas, F.; Freund, H. -J. Bulk and surface oxygen vacancy formation and diffusion in single crystals, ultrathin films, and metal grown oxide structures. J. Chem. Phys. 2006, 125, 074711.

67

Ganduglia-Pirovano, M. V.; Hofmann, A.; Sauer, J. Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges. Surf. Sci. Rep. 2007, 62, 219–270.

68

Chauke, H. R.; Murovhi, P.; Ngoepe, P. E.; de Leeuw, N. H.; Grau-Crespo, R. Electronic structure and redox properties of the Ti-doped zirconia (111) surface. J. Phys. Chem. C 2010, 114, 15403–15409.

69

Ganduglia-Pirovano, M. V.; Da Silva, J. L. F.; Sauer, J. Density-functional calculations of the structure of near-surface oxygen vacancies and electron localization on CeO2(111). Phys. Rev. Lett. 2009, 102, 026101.

70

Paier, J.; Penschke, C.; Sauer, J. Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment. Chem. Rev. 2013, 113, 3949–3985.

71

Wang, H. -F.; Li, H. -Y.; Gong, X. -Q.; Guo, Y. -L.; Lu, G. -Z.; Hu, P. Oxygen vacancy formation in CeO2 and Ce1–xZrxO2 solid solutions: Electron localization, electrostatic potential and structural relaxation. Phys. Chem. Chem. Phys. 2012, 14, 16521–16535.

72

Tang, Y.; Zhao, S.; Long, B.; Liu, J. -C.; Li, J. On the nature of support effects of metal dioxides MO2 (M = Ti, Zr, Hf, Ce, Th) in single-atom gold catalysts: Importance of quantum primogenic effect. J. Phys. Chem. C 2016, 120, 17514– 17526.

73

Nilius, N.; Freund, H. -J. Activating nonreducible oxides via doping. Acc. Chem. Res. 2015, 48, 1532–1539.

74

McFarland, E. W.; Metiu, H. Catalysis by doped oxides. Chem. Rev. 2013, 113, 4391–4427.

75

Nolan, M.; Verdugo, V. S.; Metiu, H. Vacancy formation and CO adsorption on gold-doped ceria surfaces. Surf. Sci. 2008, 602, 2734–2742.

76

Shapovalov, V.; Metiu, H. Catalysis by doped oxides: CO oxidation by AuxCe1−xO2. J. Catal. 2007, 245, 205–214.

77

Chrétien, S.; Metiu, H. Density functional study of the CO oxidation on a doped rutile TiO2(110): Effect of ionic Au in catalysis. Catal. Lett. 2006, 107, 143–147.

78

Chen, H. -T. First-principles study of CO adsorption and oxidation on Ru-doped CeO2(111) surface. J. Phys. Chem. C 2012, 116, 6239–6246.

79

Chen, H. -T.; Chang, J. -G. Computational investigation of CO adsorption and oxidation on iron-modified cerium oxide. J. Phys. Chem. C 2011, 115, 14745–14753.

80

Hsu, L. -C.; Tsai, M. -K.; Lu, Y. -H.; Chen, H. -T. Computational investigation of CO adsorption and oxidation on Mn/CeO2(111) surface. J. Phys. Chem. C 2013, 117, 433–441.

81

Liu, J.; Liu, B.; Fang, Y.; Zhao, Z.; Wei, Y. C.; Gong, X. -Q.; Xu, C. M.; Duan, A. J.; Jiang, G. Y. Preparation, characterization and origin of highly active and thermally stable Pd–Ce0.8Zr0.2O2 catalysts via sol-evaporation induced self-assembly method. Environ. Sci. Technol. 2014, 48, 12403–12410.

82

Peterson, E. J.; DeLaRiva, A. T.; Lin, S.; Johnson, R. S.; Guo, H.; Miller, J. T.; Hun Kwak, J.; Peden, C. H. F.; Kiefer, B.; Allard, L. F. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 2014, 5, 4885.

83

Chen, H. -T.; Chang, J. -G.; Chen, H. -L.; Ju, S. -P. Identifying the O2 diffusion and reduction mechanisms on CeO2 electrolyte in solid oxide fuel cells: A DFT + U study. J. Comput. Chem. 2009, 30, 2433–2442.

84

Widmann, D.; Behm, R. J. Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. Acc. Chem. Res. 2014, 47, 740–749.

85

Green, I. X.; Tang, W. J.; Neurock, M.; Yates, J. T., Jr. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 2011, 333, 736–739.

86

Wang, J.; McEntee, M.; Tang, W. J.; Neurock, M.; Baddorf, A. P.; Maksymovych, P.; Yates, J. T., Jr. Formation, migration, and reactivity of Au–CO complexes on gold surfaces. J. Am. Chem. Soc. 2016, 138, 1518–1526.

87

Liu, Z. -P.; Gong, X. -Q.; Kohanoff, J.; Sanchez, C.; Hu, P. Catalytic role of metal oxides in gold-based catalysts: A first principles study of CO oxidation on TiO2 supported Au. Phys. Rev. Lett. 2003, 91, 266102.

88

Remediakis, I. N.; Lopez, N.; Nørskov, J. K. CO oxidation on rutile-supported Au nanoparticles. Angew. Chem., Int. Ed. 2005, 44, 1824–1826.

89

Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J. Catal. 1993, 144, 175–192.

90

Bamwenda, G. R.; Tsubota, S.; Nakamura, T.; Haruta, M. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal. Lett. 1997, 44, 83–87.

91

Choudhary, T. V.; Sivadinarayana, C.; Chusuei, C. C.; Datye, A. K.; Fackler, J. P., Jr.; Goodman, D. W. CO oxidation on supported nano-Au catalysts synthesized from a[Au6(PPh3)6](BF4)2 complex. J. Catal. 2002, 207, 247–255.

92

Hernández, N. C.; Sanz, J. F.; Rodriguez, J. A. Unravelling the origin of the high-catalytic activity of supported Au: A density-functional theory-based interpretation. J. Am. Chem. Soc. 2006, 128, 15600–15601.

93

Li, L.; Gao, Y.; Li, H.; Zhao, Y.; Pei, Y.; Chen, Z. F.; Zeng, X. C. CO oxidation on TiO2(110) supported subnanometer gold clusters: Size and shape effects. J. Am. Chem. Soc. 2013, 135, 19336–19346.

94

Liu, Z. -P.; Hu, P.; Alavi, A. Catalytic role of gold in gold-based catalysts: A density functional theory study on the CO oxidation on gold. J. Am. Chem. Soc. 2002, 124, 14770–14779.

95

Liu, C. Y.; Tan, Y. Z.; Lin, S. S.; Li, H.; Wu, X. J.; Li, L.; Pei, Y.; Zeng, X. C. CO self-promoting oxidation on nanosized gold clusters: Triangular Au3 active site and CO induced O–O scission. J. Am. Chem. Soc. 2013, 135, 2583–2595.

96

Wang, Y. -G.; Yoon, Y.; Glezakou, V. -A.; Li, J.; Rousseau, R. The role of reducible oxide–metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. J. Am. Chem. Soc. 2013, 135, 10673–10683.

97

Wang, Y. -G.; Cantu, D. -C.; Lee, M. -S.; Li, J.; Glezakou, V. -A.; Rousseau, R. CO oxidation on Au/TiO2: Condition- dependent active sites and mechanistic pathways. J. Am. Chem. Soc., in press, DOI: 10.1021/jacs.6b04187.

98

Chang, C. -R.; Wang, Y. -G.; Li, J. Theoretical investigations of the catalytic role of water in propene epoxidation on gold nanoclusters: A hydroperoxyl-mediated pathway. Nano Res. 2011, 4, 131–142.

99

Chang, C. -R.; Huang, Z. -Q.; Li, J. Hydrogenation of molecular oxygen to hydroperoxyl: An alternative pathway for O2 activation on nanogold catalysts. Nano Res. 2015, 8, 3737– 3748.

100

Chang, C. -R.; Huang, Z. -Q.; Li, J. The promotional role of water in heterogeneous catalysis: Mechanism insights from computational modeling. WIREs Comput. Mol. Sci., in press, DOI: 10.1002/wcms.1272.

101

Grau-Crespo, R.; Hernández, N. C.; Sanz, J. F.; de Leeuw, N. H. Theoretical investigation of the deposition of Cu, Ag, and Au atoms on the ZrO2(111) surface. J. Phys. Chem. C 2007, 111, 10448–10454.

102

Ghosh, P.; Farnesi Camellone, M.; Fabris, S. Fluxionality of Au clusters at ceria surfaces during CO oxidation: Relationships among reactivity, size, cohesion, and surface defects from DFT simulations. J. Phys. Chem. Lett. 2013, 4, 2256–2263.

103

Pillay, D.; Hwang, G. S. Growth and structure of small gold particles on rutile TiO2(110). Phys. Rev. B 2005, 72, 205422.

104

Vijay, A.; Mills, G.; Metiu, H. Adsorption of gold on stoichiometric and reduced rutile TiO2(110) surfaces. J. Chem. Phys. 2003, 118, 6536–6551.

105

Green, I. X.; Tang, W. J.; Neurock, M.; Yates, J. T., Jr. Insights into catalytic oxidation at the Au/TiO2 dual perimeter sites. Acc. Chem. Res. 2014, 47, 805–815.

106

Green, I. X.; Tang, W. J.; McEntee, M.; Neurock, M.; Yates, J. T., Jr. Inhibition at perimeter sites of Au/TiO2 oxidation catalyst by reactant oxygen. J. Am. Chem. Soc. 2012, 134, 12717–12723.

107

Aguilar-Guerrero, V.; Gates, B. C. Kinetics of CO oxidation catalyzed by highly dispersed CeO2-supported gold. J. Catal. 2008, 260, 351–357.

108

Remediakis, I. N.; Lopez, N.; Nørskov, J. K. CO oxidation on gold nanoparticles: Theoretical studies. Appl. Catal. A 2005, 291, 13–20.

109

Zhou, Z.; Flytzani-Stephanopoulos, M.; Saltsburg, H. Decoration with ceria nanoparticles activates inert gold island/film surfaces for the CO oxidation reaction. J. Catal. 2011, 280, 255–263.

110

Bondzie, V. A.; Parker, S. C.; Campbell, C. T. The kinetics of CO oxidation by adsorbed oxygen on well-defined gold particles on TiO2(110). Catal. Lett. 1999, 63, 143–151.

111

Li, L.; Zeng, X. C. Direct simulation evidence of generation of oxygen vacancies at the golden cage Au16 and TiO2 (110) interface for CO oxidation. J. Am. Chem. Soc. 2014, 136, 15857–15.

112

Zhang, S. -R.; Nguyen, L.; Liang, J. -X.; Shan, J. -J.; Liu, J. -Y.; Frenkel, A. I.; Patlolla, A.; Huang, W. -X.; Li, J.; Tao, F. Catalysis on singly dispersed bimetallic sites. Nat. Commun. 2015, 6, 7938,

File
nr-9-12-3868_ESM.pdf (905.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 June 2016
Revised: 18 August 2016
Accepted: 20 August 2016
Published: 22 September 2016
Issue date: December 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The calculations were supported by the National Basic Research Program of China (No. 2013CB834603) and National Natural Science Foundation of China (Nos. 91426302, 21590792, and 21433005) and were performed using supercomputers at Tsinghua National Laboratory for Information Science and Technology and the Supercomputing Center, Computer Network Information Center of the Chinese Academy of Sciences.

Return