Journal Home > Volume 9 , Issue 12

High quality In2S3 kinks were synthesized via a kinetically controlled thermal deposition process and their optoelectronic characteristics were systematically explored. The growth mechanism was attributed to the combination of kinetic dynamic, crystal facial energy, and surface roughness. Two trap induced emission bands were evidenced via a low temperature cathodoluminescence (CL) study. Furthermore, the nanowire junctions demonstrated a degenerative photodetection performance, as compared to the straight arms, attributed to a stress-induced extra series resistance measured from the kinked area. The well-controllable shape of the inorganic nanostructures and the detailed exploration of their optoelectronic properties are particularly valuable for their further practical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Geometry dependent photoconductivity of In2S3 kinks synthesized by kinetically controlled thermal deposition

Show Author's information Xing Xiong§Qi Zhang§Lin GanXing ZhouXiaonan XingHuiqiao LiTianyou Zhai( )
State Key Laboratory of Material Processing and Die & Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China

§ These authors contributed equally to this work.

Abstract

High quality In2S3 kinks were synthesized via a kinetically controlled thermal deposition process and their optoelectronic characteristics were systematically explored. The growth mechanism was attributed to the combination of kinetic dynamic, crystal facial energy, and surface roughness. Two trap induced emission bands were evidenced via a low temperature cathodoluminescence (CL) study. Furthermore, the nanowire junctions demonstrated a degenerative photodetection performance, as compared to the straight arms, attributed to a stress-induced extra series resistance measured from the kinked area. The well-controllable shape of the inorganic nanostructures and the detailed exploration of their optoelectronic properties are particularly valuable for their further practical applications.

Keywords: geometry dependence, photodetection, In2S3 kinks, thermal deposition

References(46)

1

Hu, W. H.; Liu, Y. S.; Chen, T.; Liu, Y.; Li, C. M. Hybrid ZnO nanorod-polymer brush hierarchically nanostructured substrate for sensitive antibody microarrays. Adv. Mater. 2015, 27, 181–185.

2

Kuyken, B.; Ideguchi, T.; Holzner, S.; Yan, M.; Hänsch, T. W.; Van Campenhout, J.; Verheyen, P.; Coen, S.; Leo, F.; Baets, R. et al. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun. 2015, 6, 6310.

3

Cheng, C. B.; Fan, H. J. Branched nanowires: Synthesis and energy applications. Nano Today 2012, 7, 327–343.

4

Luo, T.; Liang, B.; Liu, Z.; Xie, X. M.; Lou, Z.; Shen, G. Z. Single-GaSb-nanowire-based room temperature photodetectors with broad spectral response. Sci. Bull. 2015, 60, 101–108.

5

Zhao, M. G.; Cai, B.; Ma, Y.; Cai, H.; Huang, J. Y.; Pan, X. H.; He, H. P.; Ye, Z. Z. Introducing heterojunction barriers into single kinked nanowires for the probe-free detection of proteins and intracellular recording. Nanoscale 2014, 6, 4052–4057.

6

Qing, Q.; Jiang, Z.; Xu, L.; Gao, R. X.; Mai, L. Q.; Lieber, C. M. Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 2013, 9, 142–147.

7

Burgess, T.; Caroff, P.; Wang, Y. D.; Badada, B. H.; Jackson, H. E.; Smith, L. M.; Guo, Y.; Tan, H. H.; Jagadish, C. Zn3As2 nanowires and nanoplatelets: Highly efficient infrared emission and photodetection by an earth abundant material. Nano Lett. 2015, 15, 378–385.

8

Yan, C. Y., Singh, N.; Lee, P. S. Kinking-induced structural evolution of metal oxide nanowires into single-crystalline nanorings. ACS Nano 2010, 4, 5350–5356.

9

Madras, P.; Dailey, E.; Drucker, J. Kinetically induced kinking of vapor-liquid-solid grown epitaxial Si nanowires. Nano Lett. 2009, 9, 3826–3830.

10

Li, H. Q.; Wang, X.; Xu, J. Q.; Zhang, Q.; Bando, Y.; Golberg, D.; Ma, Y.; Zhai, T. Y. One-dimensional CdS nanostructures: A promising candidate for optoelectronics. Adv. Mater. 2013, 25, 3017–3037.

11

Li, J. B.; Meng, C.; Liu, Y.; Wu, X. Q.; Lu, Y. Z.; Ye, Y.; Dai, L.; Tong, L. M.; Liu, X.; Yang, Q. Wavelength tunable CdSe nanowire lasers based on the absorption-emission- absorption process. Adv. Mater. 2013, 25, 833–837.

12

Chaudhari, N.; Mandal, L.; Game, O.; Warule, S.; Phase, D.; Jadkar, S.; Ogale, S. Dramatic enhancement in photoresponse of β-In2S3 through suppression of dark conductivity by synthetic control of defect-induced carrier compensation. ACS Appl. Mater. Interfaces 2015, 7, 17671–17681.

13

Acharya, S.; Dutta, M.; Sarkar, S.; Basak, D.; Chakraborty, S.; Pradhan, N. Synthesis of micrometer length indium sulfide nanosheets and study of their dopant induced photoresponse properties. Chem. Mater. 2012, 24, 1779– 1785.

14

Xie, X. M.; Shen, G. Z. Single-crystalline In2S3 nanowire- based flexible visible-light photodetectors with an ultra-high photoresponse. Nanoscale 2015, 7, 5046–5052.

15

Jayakrishnan, R.; John, T. T.; Kartha, C. S.; Vijayakumar, K. P.; Abe, T.; Kashiwaba, Y. Defect analysis of sprayed β-In2S3 thin films using photoluminescence studies. Semicond. Sci. Technol. 2005, 20, 1162–1167.

16

Caroff, P.; Dick, K. A.; Johansson, J.; Messing, M. E.; Deppert, K.; Samuelson, L. Controlled polytypic and twin- plane superlattices in Ⅲ–Ⅴ nanowires. Nat. Nanotechnol. 2009, 4, 50–55.

17

Algra, R. E.; Verheijen, M. A.; Borgström, M. T.; Feiner, L. F.; Immink, G.; van Enckevort, W. J. P.; Vlieg, E.; Bakkers, E. P. A. M. Twinning superlattices in indium phosphide nanowires. Nature 2008, 456, 369–372.

18

Shen, G. Z.; Liang, B.; Wang, X. F.; Chen, P. C.; Zhou, C. W. Indium oxide nanospirals made of kinked nanowires. ACS Nano 2011, 5, 2155–2161.

19

Tian, B. Z.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824–829.

20

Dellis, S.; Christoulaki, A.; Spiliopoulos, N.; Anastassopoulos, D. L.; Vradis, A. A. Electrochemical synthesis of large diameter monocrystalline nickel nanowires in porous alumina membranes. J. Appl. Phys. 2013, 114, 164308.

21

Tan, M.; Chen, X. Q. Growth mechanism of single crystal nanowires of fcc metals (Ag, Cu, Ni) and hcp metal (Co) electrodeposited. J. Electrochem. Soc. 2012, 159, K15–K20.

22

Tsong, T. T. Atom-Probe Field Ion Microscopy; Cambridge University Press: Cambridge, 1990.

DOI
23

Kim, Y.; Trung, T. S. B.; Yang, S.; Kim, S.; Lee, H. Mechanism of the surface hydrogen induced conversion of CO2 to methanol at Cu(111) step sites. ACS Catal. 2016, 6, 1037–1044.

24

Gan, L.; Liao, M. Y.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Geometry- induced high performance ultraviolet photodetectors in kinked SnO2 nanowires. J. Mater. Chem. C 2015, 3, 8300– 8306.

25

Shin, N.; Chi, M. F.; Filler, M. A. Interplay between defect propagation and surface hydrogen in silicon nanowire kinking superstructures. ACS Nano 2014, 8, 3829–3835.

26

Tchernycheva, M.; Lavenus, P.; Zhang, H.; Babichev, A. V.; Jacopin, G.; Shahmohammadi, M.; Julien, F. H.; Ciechonski, R.; Vescovi, G.; Kryliouk, O. InGaN/Gan core–shell single nanowire light emitting diodes with graphene-based p-contact. Nano Lett. 2014, 14, 2456–2465.

27

Im, H. S.; Park, K.; Jang, D. M.; Jung, C. S.; Park, J.; Yoo, S. J.; Kim, J. G. Zn3P2-Zn3As2 solid solution nanowires. Nano Lett. 2015, 15, 990–997.

28

Li, L.; Pandey, A.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I. Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. J. Am. Chem. Soc. 2011, 133, 1176–1179.

29

Jayakrishnan, R.; Sebastian, T.; Sudha Kartha, C.; Vijayakumar, K. P. Effect of defect bands in β-In2S3 thin films. J. Appl. Phys. 2012, 111, 093714.

30

Rengaraj, S.; Venkataraj, S.; Tai, C. W.; Kim, Y.; Repo, E.; Sillanpää, M. S. Self-assembled mesoporous hierarchical- like In2S3 hollow microspheres composed of nanofibers and nanosheets and their photocatalytic activity. Langmuir 2011, 27, 5534–5541.

31

Cansizoglu, H.; Cansizoglu, M. F.; Watanabe, F.; Karabacak, T. Enhanced photocurrent and dynamic response in vertically aligned In2S3/Ag core/shell nanorod array photoconductive devices. ACS Appl. Mater. Interfaces 2014, 6, 8673–8682.

32

Nielsen, A.; Kuzmanich, G.; Garcia-Garibay, M. A. Quantum chain reaction of tethered diarylcyclopropenones in the solid state and their distance-dependence in solution reveal a Dexter S2-S2 energy-transfer mechanism. J. Phys. Chem. A 2014, 118, 1858–1863.

33

Tang, J.; Konstantatos, G.; Hinds, S.; Myrskog, S.; Pattantyus-Abraham, A. G.; Clifford, J.; Sargent, E. H. Heavy-metal-free solution-processed nanoparticle-based photodetectors: Doping of intrinsic vacancies enables engineering of sensitivity and speed. ACS Nano 2009, 3, 331–338.

34

Fan, C.; Zhang, Q. L.; Zhu, X. L.; Zhuang, X. J.; Pan, A. L. Photoluminescence and surface photovoltage properties of ZnSe nanoribbons. Sci. Bull. 2015, 60, 1674–1679.

35

Ma, Y. Ultrathin SnSe2 flakes: A new member in two- dimensional materials for high-performance photodetector. Sci. Bull. 2015, 60, 1789–1790.

36

Li, L.; Lee, P. S.; Yan, C. Y.; Zhai, T. Y.; Fang, X. S.; Liao, M. Y.; Koide, Y.; Bando, Y.; Golberg, D. Ultrahigh- performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts. Adv. Mater. 2010, 22, 5145–5149.

37

Shao, D. L.; Gao, J.; Chow, P.; Sun, H. T.; Xin, G. Q.; Sharma, P.; Lian, J.; Koratkar, N. A.; Sawyer, S. Organic– inorganic heterointerfaces for ultrasensitive detection of ultraviolet light. Nano Lett. 2015, 15, 3787–3792.

38

Xing, X. N.; Zhang, Q.; Huang, Z.; Lu, Z. J.; Zhang, J. B.; Li, H. Q.; Zeng, H. B.; Zhai, T. Y. Strain driven spectral broadening of Pb ion exchanged CdS nanowires. Small 2016, 12, 874–881.

39

Chen, J. N.; Conache, G.; Pistol, M. E.; Gray, S. M.; Borgstrom, M. T.; Xu, H. X.; Xu, H. Q.; Samuelson, L.; Håkanson, U. Probing strain in bent semiconductor nanowires with Raman spectroscopy. Nano Lett. 2010, 10, 1280–1286.

40

Gruber, T.; Prinz, G. M.; Kirchner, C.; Kling, R.; Reuss, F.; Limmer, W.; Waag, A. Influences of biaxial strains on the vibrational and exciton energies in ZnO. J. Appl. Phys. 2004, 96, 289–292.

41

Sahoo, S.; Arora, A. K. Laser-power-induced multiphonon resonant Raman scattering in laser-heated CdS nanocrystal. J. Phys. Chem. B 2010, 114, 4199–4203.

42

Sahoo, S.; Sharma, G. L.; Katiyar, R. S. Raman spectroscopy to probe residual stress in ZnO nanowire. J. Raman Spectrosc. 2012, 43, 72–75.

43

Cook, B. G.; Varga, K. Conductance of kinked nanowires. Appl. Phys. Lett. 2011, 98, 052104.

44

Amer, M.; Bushmaker, A.; Cronin, S. Anomalous kink behavior in the current–voltage characteristics of suspended carbon nanotubes. Nano Res. 2012, 5, 172–180.

45

Li, X. L.; Zhang, Y. Z.; Shen, Z. X.; Fan, H. J. Highly ordered arrays of particle-in-bowl plasmonic nanostructures for surface- enhanced Raman scattering. Small 2012, 8, 2548–2554.

46

Li, H. X.; Zhang, X. H.; Liu, N. S.; Ding, L. W.; Yao, J. Y.; Wang, S. L.; Su, J.; Li, L. Y.; Gao, Y. H. Enhanced photo- response properties of a single ZnO microwire photodetector by coupling effect between localized Schottky barriers and piezoelectric potential. Opt. Express 2015, 23, 21204–21212.

File
nr-9-12-3848_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 June 2016
Revised: 10 August 2016
Accepted: 16 August 2016
Published: 10 September 2016
Issue date: December 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21322106, 51472097 and 51402114), National Basic Research Program of China (No. 2015CB932600), Program for HUST Interdisciplinary Innovation Team (No. 2015ZDTD038) and the Fundamental Research Funds for the Central Universities. The authors thank the Analytical and Testing Centre of Huazhong University of Science and Technology.

Return