Journal Home > Volume 9 , Issue 12

Defective TiO2 has attracted increasing attention for use in photocatalytic and electrochemical materials because of its narrowed band-gap and improved visible-light photocatalytic activity. However, a facile and efficient approach for obtaining defect-rich TiO2 still remains a challenge. Herein, we demonstrate such an approach to narrow its bandgap and improve visible-light absorption through implanting abundant defects by aerodynamic levitated laser annealing (ALLA) treatment. Note that the ALLA method not only provides rapid annealing, solidifying and cooling process, but also exhibits high efficiency for homogeneous and defective TiO2 nanoparticles. The laser-annealed TiO2 achieves a high hydrogen evolution rate of 8.54 mmol·h–1·g–1, excellent decomposition properties within 60 min, and outstanding recyclability and stability, all of which are superior to the corresponding properties of commercial P25.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Aerodynamic levitated laser annealing method to defective titanium dioxide with enhanced photocatalytic performance

Show Author's information Hehe Wei1,§Xiaoguang Ma2,§Liu Gu3,§Jianqiang Li2( )Wenjie Si1Gang Ou1,4Wen Yu1Chunsong Zhao1Jiaying Li1,2Mingjun Song1Zhijian Peng3Hui Wu1( )
State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
National Engineering Laboratory for Hydrometallurgical Cleaner Production TechnologyKey Laboratory of Green Process and EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
School of Engineering and TechnologyChina University of GeosciencesBeijing100083China
Department of Chemistry and Collaborative Innovation Center for Nanomaterial Science and EngineeringTsinghua UniversityBeijing100084China

§These authors contributed equally to this work.

Abstract

Defective TiO2 has attracted increasing attention for use in photocatalytic and electrochemical materials because of its narrowed band-gap and improved visible-light photocatalytic activity. However, a facile and efficient approach for obtaining defect-rich TiO2 still remains a challenge. Herein, we demonstrate such an approach to narrow its bandgap and improve visible-light absorption through implanting abundant defects by aerodynamic levitated laser annealing (ALLA) treatment. Note that the ALLA method not only provides rapid annealing, solidifying and cooling process, but also exhibits high efficiency for homogeneous and defective TiO2 nanoparticles. The laser-annealed TiO2 achieves a high hydrogen evolution rate of 8.54 mmol·h–1·g–1, excellent decomposition properties within 60 min, and outstanding recyclability and stability, all of which are superior to the corresponding properties of commercial P25.

Keywords: photocatalyst, TiO2, hydrogen evolution, laser annealing

References(38)

1

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

2

Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.

3

Fresno, F.; Portela, R.; Suárez, S.; Coronado, J. M. Photocatalytic materials: Recent achievements and near future trends. J. Mater. Chem. A 2014, 2, 2863–2884.

4

Queisser, H. J.; Haller, E. E. Defects in semiconductors: Some fatal, some vital. Science 1998, 281, 945–950.

5

Serpone, N.; Emeline, A. V. Semiconductor photocatalysis— Past, present, and future outlook. J. Phys. Chem. Lett. 2012, 3, 673–677.

6

Zhu, Q.; Peng, Y.; Lin, L.; Fan, C. M.; Gao, G. Q.; Wang, R. X.; Xu, A. W. Stable blue TiO2–x nanoparticles for efficient visible light photocatalysts. J. Mater. Chem. A. 2014, 2, 4429–4437.

7

Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603.

8

Ren, R.; Wen, Z. H.; Cui, S. M.; Hou, Y.; Guo, X. R.; Chen, J. H. Controllable synthesis and tunable photocatalytic properties of Ti3+-doped TiO2. Sci. Rep. 2015, 5, 10714.

9

Fan, C. Y.; Chen, C.; Wang, J.; Fu, X. X.; Ren, Z. M.; Qian, G. D.; Wang, Z. Y. Black hydroxylated titanium dioxide prepared via ultrasonication with enhanced photocatalytic activity. Sci. Rep. 2015, 5, 11712.

10

Liu, B.; Chen, H. M.; Liu, C.; Andrews, S. C.; Hahn, C.; Yang, P. D. Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J. Am. Chem. Soc. 2013, 135, 9995–9998.

11

Inturi, S. N. R.; Boningari, T.; Suidan, M.; Smirniotis, P. G. Flame aerosol synthesized Cr incorporated TiO2 for visible light photodegradation of gas phase acetonitrile. J. Phys. Chem. C 2014, 118, 231–242.

12

Ghosh, R.; Hara, Y.; Alibabaei, L.; Hanson, K.; Rangan, S.; Bartynski, R.; Meyer, T. J.; Lopez, R. Increasing photocurrents in dye sensitized solar cells with tantalum-doped titanium oxide photoanodes obtained by laser ablation. ACS Appl. Mater. Interfaces 2012, 4, 4566–4570.

13

Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271.

14

Hoang, S.; Guo, S. W.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett. 2012, 12, 26–32.

15

Hamilton, J. W. J.; Byrne, J. A. Dunlop, P. S. M.; Dionysiou, D. D.; Pelaez, M.; O'Shea, K.; Synnott, D.; Pillai, S. C. Evaluating the mechanism of visible light activity for N, F-TiO2 using photoelectrochemistry. J. Phys. Chem. C 2014, 118, 12206–12215.

16

Dorenbos, P. The Electronic structure of lanthanide impurities in TiO2, ZnO, SnO2, and related compounds. ECS J. Solid State Sci. Technol. 2014, 3, R19–R24.

17

Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229.

18

Yin, J. B.; Zhao, X. P. Temperature effect of rare earth- doped TiO2 electrorheological fluids. J. Phys. D: Appl. Phys. 2001, 34, 2063–2067.

19

Zhang, Q. Y.; Gao, T. T.; Andino, J. M.; Li, Y. Copper and iodine co-modified TiO2 nanoparticles for improved activity of CO2 photoreduction with water vapor. Appl. Catal. B. Environ. 2012, 123–124, 257–264.

20

Wu, X. Y.; Yin, S.; Dong, Q.; Guo, C. S.; Kimura, T.; Matsushita, J. I.; Sato, T. Photocatalytic properties of Nd and C codoped TiO2 with the whole range of visible light absorption. J. Phys. Chem. C 2013, 117, 8345–8352.

21

Chen, X. B.; Liu, L.; Huang, F. Q. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885.

22

Mocatta, D.; Cohen, G.; Schattner, J.; Millo, O.; Rabani, E.; Banin, U. Heavily doped semiconductor nanocrystal quantum dots. Science 2011, 332, 77–81.

23

Yang, C. Y.; Wang, Z.; Lin, T. Q.; Yin, H.; Lü, X. J.; Wan, D. Y.; Xu, L.; Zheng, C.; Lin, J. H.; Huang, F. Q. et al. Core– shell nanostructured "black" rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. J. Am. Chem. Soc. 2013, 135, 17831–17838.

24

Ronning, C.; Borschel, C.; Geburt, S.; Niepelt, R. Ion beam doping of semiconductor nanowires. Mater. Sci. Eng. Res. 2010, 70, 30–43.

25

Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

26

Devi, M.; Panigrahi, M. R.; Singh, U. P. Microstructures, optical and electrical properties of TiO2 thin films prepared by unconventional sol–gel route. J. Mater. Sci. : Mater. El. 2015, 26, 1186–1191.

27

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor- based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

28

Chen, X. B.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 2012, 41, 7909–7939.

29

Pan, X. Y.; Yang, M. Q.; Fu, X. Z.; Zhang, N.; Xu, Y. J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601– 3614.

30

Khan, Z.; Khannam, M.; Vinothkumar, N.; De, M.; Qureshi, M. Hierarchical 3D NiO-CdS heteroarchitecture for efficient visible light photocatalytic hydrogen generation. J. Mater. Chem. 2012, 22, 12090–12095.

31

Li, L. D.; Yan, J. Q.; Wang, T.; Zhao, Z. J.; Zhang, J.; Gong, J. L.; Guan, N. J. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015, 6, 5881.

32

Orendorz, A.; Brodyanski, A.; Lösch, J.; Bai, L. H.; Chen, Z. H.; Le, Y. K.; Ziegler, C.; Gnaser, H. Phase transformation and particle growth in nanocrystalline anatase TiO2 films analyzed by X-ray diffraction and Raman spectroscopy. Surf. Sci. 2007, 601, 4390–4394.

33

Porto, S. S. P.; Fleury, P. A.; Damen, T. C. Raman spectra of TiO2, MgF2, ZnF2 FeF2, and MnF2. Phys. Rev. 1967, 154, 522–526.

34

Zhou, Y.; Yu, S. H.; Wang, C. Y.; Li, X. G.; Zhu, Y. R.; Chen, Z. Y. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Adv. Mater. 1999, 11, 850–852.

DOI
35

Rossella, F.; Galinetto, P.; Mozzati, M. C.; Malavasi, L.; Fernandez, Y. D.; Drera, G.; Sangaletti, L. TiO2 thin films for spintronics application: A Raman study. J. Raman Spectrosc. 2010, 41, 558–565.

36

Ou, G.; Li, Z. W.; Li, D. K.; Cheng, L.; Liu, Z.; Wu, H. Photothermal therapy by using titanium oxide nanoparticles. Nano Res. 2016, 9, 1236–1243.

37

Li, J. Y.; Li, J. Q.; Li, B.; Yu, J. D.; Qi, L. H. An upconversion niobium pentoxide bulk glass codoped with Er3+/Yb3+ fabricated by aerodynamic levitation method. J. Am. Ceram. Soc. 2015, 98, 1865–1869.

38

Ma, X. G.; Peng, Z. J.; Li, J. Q. Effect of Ta2O5 substituting on thermal and optical properties of high refractive index La2O3–Nb2O5 glass system prepared by aerodynamic levitation method. J. Am. Ceram. Soc. 2014, 98, 770–773.

File
nr-9-12-3839_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 June 2016
Revised: 15 August 2016
Accepted: 16 August 2016
Published: 10 September 2016
Issue date: December 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 51471158, 51674232 and 51274182) and Beijing Natural Science Foundation (Nos. 2152032 and 2112039).

Return