Journal Home > Volume 9 , Issue 12

The particular physicochemical properties of nanomaterials are able to elicit unique biological responses. The property activity relationship is usually established for in-depth understanding of toxicity mechanisms and designing safer nanomaterials. In this study, the toxic role of specific crystallographic facets of a series of polyhedral lead sulfide (PbS) nanocrystals, including truncated octahedrons, cuboctahedrons, truncated cubes, and cubes, was investigated in human bronchial epithelial cells (BEAS-2B) and murine alveolar macrophages (RAW 264.7) cells. {100} facets were found capable of triggering facet-dependent cellular oxidative stress and heavy metal stress responses, such as glutathione depletion, lipid peroxidation, reactive oxygen species (ROS) production, heme oxygenase-1 (HO-1) and metallothionein (MT) expression, and mitochondrial dysfunction, while {111} facets remained inert under biological conditions. The {100}-facet-dependent toxicity was ascribed to {100}-facet-dependent lead dissolution, while the low lead dissolution of {111} facets was due to the strong protection afforded by poly(vinyl pyrrolidone) during synthesis. Based on this facet-toxicity relationship, a "safe-by-design" strategy was designed to prevent lead dissolution from {100} facets through the formation of atomically thin lead-chloride adlayers, resulting in safer polyhedral PbS nanocrystals.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Crystallographic facet-dependent stress responses by polyhedral lead sulfide nanocrystals and the potential "safe-by-design" approach

Show Author's information Yun Chang1,2Kai Li2,3Yanlin Feng1,2Ning Liu1,2Yan Cheng1,2Xiujuan Sun1,2Yuqing Feng4Xi Li4( )Zhijian Wu2,3( )Haiyuan Zhang1,2( )
Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
University of Chinese Academy of SciencesBeijing100049China
State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
School of Chemistry and Life ScienceChangchun University of TechnologyChangchun130012China

Abstract

The particular physicochemical properties of nanomaterials are able to elicit unique biological responses. The property activity relationship is usually established for in-depth understanding of toxicity mechanisms and designing safer nanomaterials. In this study, the toxic role of specific crystallographic facets of a series of polyhedral lead sulfide (PbS) nanocrystals, including truncated octahedrons, cuboctahedrons, truncated cubes, and cubes, was investigated in human bronchial epithelial cells (BEAS-2B) and murine alveolar macrophages (RAW 264.7) cells. {100} facets were found capable of triggering facet-dependent cellular oxidative stress and heavy metal stress responses, such as glutathione depletion, lipid peroxidation, reactive oxygen species (ROS) production, heme oxygenase-1 (HO-1) and metallothionein (MT) expression, and mitochondrial dysfunction, while {111} facets remained inert under biological conditions. The {100}-facet-dependent toxicity was ascribed to {100}-facet-dependent lead dissolution, while the low lead dissolution of {111} facets was due to the strong protection afforded by poly(vinyl pyrrolidone) during synthesis. Based on this facet-toxicity relationship, a "safe-by-design" strategy was designed to prevent lead dissolution from {100} facets through the formation of atomically thin lead-chloride adlayers, resulting in safer polyhedral PbS nanocrystals.

Keywords: nanomaterials, toxicity, facet, metal dissolution, safe-by-design

References(45)

1

Service, R. F. Nanomaterials show signs of toxicity. Science 2003, 300, 243.

2

Brumfiel, G. Nanotechnology: A little knowledge. . . Nature 2003, 424, 246–248.

3

Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311, 622–627.

4

Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839.

5

Cohen, Y.; Rallo, R.; Liu, R.; Liu, H. H. In silico analysis of nanomaterials hazard and risk. Acc. Chem. Res. 2013, 46, 802–812.

6

Nel, A.; Xia, T.; Meng, H.; Wang, X.; Lin, S. J.; Ji, Z. X.; Zhang, H. Y. Nanomaterial toxicity testing in the 21st century: Use of a predictive toxicological approach and high-throughput screening. Acc. Chem. Res. 2013, 46, 607–621.

7

Zhang, H. Y.; Ji, Z. X.; Xia, T.; Meng, H.; Low-Kam, C.; Liu, R.; Pokhrel, S.; Lin, S. J.; Wang, X.; Liao, Y. P. et al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 2012, 6, 4349–4368.

8

Puzyn, T.; Rasulev, B.; Gajewicz, A.; Hu, X. K.; Dasari, T. P.; Michalkova, A.; Hwang, H. M.; Toropov, A.; Leszczynska, D.; Leszczynski, J. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol. 2011, 6, 175–178.

9

Lynch, I.; Weiss, C.; Valsami-Jones, E. A strategy for grouping of nanomaterials based on key physico-chemical descriptors as a basis for safer-by-design NMs. Nano Today 2014, 9, 266–270.

10

Sealy, C. 'Safe-by-design' nanoparticles show reduced toxicity. Nano Today 2011, 6, 113–114.

11

Campagnolo, L.; Massimiani, M.; Magrini, A.; Camaioni, A.; Pietroiusti, A. Physico-chemical properties mediating reproductive and developmental toxicity of engineered nanomaterials. Curr. Med. Chem. 2012, 19, 4488–4494.

12

Fubini, B.; Ghiazza, M.; Fenoglio, I. Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 2010, 4, 347–363.

13

Han, X. G.; Jin, M. S.; Xie, S. F.; Kuang, Q.; Jiang, Z. Y.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy {221} facets and enhanced gas-sensing properties. Angew. Chem., Int. Ed. 2009, 48, 9180–9183.

14

Hu, L. H.; Peng, Q.; Li, Y. D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 130, 16136–16137.

15

Wang, L.; Li, H. B.; Xu, S. L.; Yue, Q. L.; Liu, J. F. Facet-dependent optical properties of nanostructured ZnO. Mater. Chem. Phys. 2014, 147, 1134–1139.

16

Huang, M. H.; Rej, S.; Chiu, C. Y. Facet-dependent optical properties revealed through investigation of polyhedral Au–Cu2O and bimetallic core–shell nanocrystals. Small 2015, 11, 2716–2726.

17

Luo, T.; Meng, Q. Q.; Gao, C.; Yu, X. Y.; Jia, Y.; Sun, B.; Jin, Z.; Li, Q. X.; Liu, J. H.; Huang, X. J. Sub-20 nm-Fe3O4 square and circular nanoplates: Synthesis and facet-dependent magnetic and electrochemical properties. Chem. Commun. 2014, 50, 15952–15925.

18

Tan, C. S.; Hsu, S. C.; Ke, W. H.; Chen, L. J.; Huang, M. H. Facet-dependent electrical conductivity properties of Cu2O crystals. Nano Lett. 2015, 15, 2155–2160.

19

Yu, X. Y.; Meng, Q. Q.; Luo, T.; Jia, Y.; Sun, B.; Li, Q. X.; Liu, J. H.; Huang, X. J. Facet-dependent electrochemical properties of Co3O4 nanocrystals toward heavy metal ions. Sci. Rep. 2013, 3, 2886.

20

Peng, Z. P.; Jiang, Y. S.; Song, Y. H.; Wang, C.; Zhang, H. J. Morphology control of nanoscale PbS particles in a polyol process. Chem. Mater. 2008, 20, 3153–3162.

21

Woo, J. Y.; Ko, J. H.; Song, J. H.; Kim, K.; Choi, H.; Kim, Y. H.; Lee, D. C.; Jeong, S. Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe(100). J. Am. Chem. Soc. 2014, 136, 8883–8886.

22

Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

23

Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

24

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

25

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

26

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

27

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

28

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

29

Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

30

Zhang, H. Y.; Dunphy, D. R.; Jiang, X. M.; Meng, H.; Sun, B. B.; Tarn, D.; Xue, M.; Wang, X.; Lin, S. J.; Ji, Z. X. et al. Processing pathway dependence of amorphous silica nanoparticle toxicity: Colloidal vs pyrolytic. J. Am. Chem. Soc. 2012, 134, 15790–15804.

31

Xia, T.; Kovochich, M.; Liong, M.; Mädler, L.; Gilbert, B.; Shi, H. B.; Yeh, J. I.; Zink, J. I.; Nel, A. E. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008, 2, 2121–2134.

32

Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662–668.

33

Huang, X. L.; Li, L. L.; Liu, T. L.; Hao, N. J.; Liu, H. Y.; Chen, D.; Tang, F. Q. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 2011, 5, 5390–5399.

34

Rushton, E. K.; Jiang, J. K.; Leonard, S. S.; Eberly, S.; Castranova, V.; Biswas, P.; Elder, A.; Han, X. L.; Gelein, R.; Finkelstein, J. et al. Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J. Toxicol. Environ. Health A 2010, 73, 445–461.

35

Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557.

36

Lin, Y. S.; Haynes, C. L. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J. Am. Chem. Soc. 2010, 132, 4834–4842.

37

George, S.; Lin, S. J.; Ji, Z. X.; Thomas, C. R.; Li, L.; Mecklenburg, M.; Meng, H.; Wang, X.; Zhang, H. Y.; Xia, T. et al. Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 2012, 6, 3745–3759.

38

Zhang, H. Y.; Xia, T.; Meng, H.; Xue, M.; George, S.; Ji, Z. X.; Wang, X.; Liu, R.; Wang, M. Y.; France, B. et al. Differential expression of syndecan-1 mediates cationic nanoparticle toxicity in undifferentiated versus differentiated normal human bronchial epithelial cells. ACS Nano 2011, 5, 2756–2769.

39

Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 2012, 5, 47–58.

40

Chen, F.; Qiu, W. M.; Chen, X. Q.; Wang, M.; Chen, H. Z. Nonsurfactant synthesis of PbS crystals via electrodeposition and hydrothermal methods: From octahedron to mayapyramid. CrystEngComm 2010, 12, 1893–1898.

41

Li, Y. H.; Atagana, H. I.; Liu, J. C.; Wu, W. L.; Wu, S. J. cDNA sequence encoding metallothionein protein from Aegiceras corniculatum and its gene expression induced by Pb2+ and Cd2+ stresses. Environ. Monit. Assess. 2013, 185, 10201–10208.

42

Zhang, H. Y.; Wang, X.; Wang, M. Y.; Li, L. J.; Chang, C. H.; Ji, Z. X.; Xia, T.; Nel, A. E. Mammalian cells exhibit a range of sensitivities to silver nanoparticles that are partially explicable by variations in antioxidant defense and metallothionein expression. Small 2015, 11, 3797–3805.

43

Bae, W. K.; Joo, J.; Padilha, L. A.; Won, J.; Lee, D. C.; Lin, Q. L.; Koh, W. K.; Luo, H. M.; Klimov, V. I.; Pietryga, J. M. Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine. J. Am. Chem. Soc. 2012, 134, 20160–20168.

44

Zhang, J. B.; Gao, J. B.; Miller, E. M.; Luther, J. M.; Beard, M. C. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. ACS Nano 2014, 8, 614–622.

45

Moreels, I.; Justo, Y.; De Geyter, B.; Haustraete, K.; Martins, J. C.; Hens, Z. Size-tunable, bright, and stable PbS quantum dots: A surface chemistry study. ACS Nano 2011, 5, 2004–2012.

File
nr-9-12-3812_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 June 2016
Revised: 09 August 2016
Accepted: 14 August 2016
Published: 29 September 2016
Issue date: December 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was primarily supported by the National Natural Science Foundation of China (Nos. 21573216 and 21501170), Hundred Talent Program of CAS, Science and Technology Development Project Foundation of Jilin Province (Nos. 20160101304JC and 20160520134JH), Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, the Start-up fund from Changchun Institute of Applied Chemistry, CAS, and Talent Development fund of Jilin, China.

Return