Journal Home > Volume 9 , Issue 12

Three-dimensional (3D) graphene has recently attracted enormous attention for electrochemical energy storage applications. However, current methods suffer from an inability to simultaneously control and engineer the porosity and morphology of the graphene frameworks. Here, we report the designed synthesis of ordered mesoporous graphene spheres (OMGSs) by transformation of self-assembled Fe3O4 nanocrystal superlattices. The resultant OMGSs have an ultrathin framework comprising few-layered graphene, with highly ordered and interconnected mesoporosity and a high surface area. These advantageous structural and textural features, in combination with the excellent electrical conductivity of the graphitic frameworks, render the OMGSs an ideal and general platform for creating hybrid materials that are well suited for use as composite electrodes in lithium-ion batteries (LIBs). As a proof-of-concept demonstration, SnO2 and GeO2 nanoparticles are incorporated into the OMGSs to afford SnO2@OMGSs and GeO2@OMGSs, respectively, both of which exhibit outstanding lithium storage properties when used as LIB anodes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Designed synthesis of ordered mesoporous graphene spheres from colloidal nanocrystals and their application as a platform for high-performance lithium-ion battery composite electrodes

Show Author's information Huijuan Yu1,2,§Guannan Guo1,2,§Li Ji2Hanwen Li1Dong Yang1( )Jianhua Hu1Angang Dong2( )
State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan UniversityShanghai200433China
Collaborative Innovation Center of Chemistry for Energy MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Department of ChemistryFudan UniversityShanghai200433China

§These authors contributed equally to this work.

Abstract

Three-dimensional (3D) graphene has recently attracted enormous attention for electrochemical energy storage applications. However, current methods suffer from an inability to simultaneously control and engineer the porosity and morphology of the graphene frameworks. Here, we report the designed synthesis of ordered mesoporous graphene spheres (OMGSs) by transformation of self-assembled Fe3O4 nanocrystal superlattices. The resultant OMGSs have an ultrathin framework comprising few-layered graphene, with highly ordered and interconnected mesoporosity and a high surface area. These advantageous structural and textural features, in combination with the excellent electrical conductivity of the graphitic frameworks, render the OMGSs an ideal and general platform for creating hybrid materials that are well suited for use as composite electrodes in lithium-ion batteries (LIBs). As a proof-of-concept demonstration, SnO2 and GeO2 nanoparticles are incorporated into the OMGSs to afford SnO2@OMGSs and GeO2@OMGSs, respectively, both of which exhibit outstanding lithium storage properties when used as LIB anodes.

Keywords: self-assembly, nanocrystals, lithium-ion battery, ordered mesoporous graphene spheres, nanocrystal superlattices

References(61)

1

Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

2

Chen, K. F.; Song, S. Y.; Liu, F.; Xue, D. F. Structural design of graphene for use in electrochemical energy storage devices. Chem. Soc. Rev. 2015, 44, 6230–6257.

3

Xu, Y. X.; Shi, G. Q.; Duan, X. F. Self-assembled threedimensional graphene macrostructures: Synthesis and applications in supercapacitors. Acc. Chem. Res. 2015, 48, 1666–1675.

4

Zhang, X.; Zhang, H. T.; Li, C.; Wang, K.; Sun, X. Z.; Ma, Y. W. Recent advances in porous graphene materials for supercapacitor applications. RSC Adv. 2014, 4, 45862–45884.

5

Jiang, L. L.; Fan, Z. J. Design of advanced porous graphene materials: From graphene nanomesh to 3D architectures. Nanoscale 2014, 6, 1922–1945.

6

Yin, S. Y.; Niu, Z. Q.; Chen, X. D. Assembly of graphene sheets into 3D macroscopic structures. Small 2012, 8, 2458–2463.

7

Luo, J. S.; Liu, J. L.; Zeng, Z. Y.; Ng, C. F; Ma, L. J.; Zhang, H.; Lin, J. Y.; Shen, Z. X.; Fan, H. J. Threedimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136–6143.

8

Li, Y. Y.; Zhang, Q. W.; Zhu, J. L.; Wei, X. L.; Shen, P. K. An extremely stable MnO2 anode incorporated with 3D porous graphene-like networks for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 3163–3168.

9

Choi, B. G.; Yang, M.; Hong, W. H.; Choi, J. W.; Huh, Y. S.3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 2012, 6, 4020–4028.

10

Mahmood, N.; Zhang, C. Z.; Yin, H.; Hou, Y. L. Graphenebased nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J. Mater. Chem. A 2014, 2, 15–32.

11

Wu, Z. S.; Zhou, G. M.; Yin, L. C.; Ren, W. C.; Li, F.; Cheng, H. M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107–131.

12

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

13

Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

14

Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

15

Yin, S. Y.; Goldovsky, Y.; Herzberg, M.; Liu, L.; Sun, H.; Zhang, Y. Y.; Meng, F. B.; Cao, X. B.; Sun, D. D.; Chen, H. Y. et al. Functional free-standing graphene honeycomb films. Adv. Funct. Mater. 2013, 23, 2972–2978.

16

Huang, X. D.; Qian, K.; Yang, J.; Zhang, J.; Li, L.; Yu, C. Z.; Zhao, D. Y. Functional nanoporous graphene foams with controlled pore sizes. Adv. Mater. 2012, 24, 4419–4423.

17

Fang, Y.; Lv, Y. Y.; Che, R. C.; Wu, H. Y.; Zhang, X. H.; Gu, D.; Zheng, G. F.; Zhao, D. Y. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: Synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 2013, 135, 1524–1530.

18

Cao, X. H.; Yin, Z. Y.; Zhang, H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors. Energy Environ. Sci. 2014, 7, 1850–1865.

19

Han, S.; Wu, D. Q.; Li, S.; Zhang, F.; Feng, X. L. Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv. Mater. 2014, 26, 849–864.

20

Wang, C. W.; Wang, Y.; Graser, J.; Zhao, R.; Gao, F.; O' Connell, M. J. Solution-based carbohydrate synthesis of individual solid, hollow, and porous carbon nanospheres using spray pyrolysis. ACS Nano 2013, 7, 11156–11165.

21

Lee, J. S.; Kim, S. I.; Yoon, J. C.; Jang, J. H. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor. ACS Nano 2013, 7, 6047–6055.

22

Zhao, Y.; Hu, C. G.; Hu, Y.; Cheng, H. H.; Shi, G. Q.; Qu, L. T. A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem., Int. Ed. 2012, 124, 11533–11537.

23

Cai, D. D.; Ding, L. X.; Wang, S. Q.; Li, Z.; Zhu, M.; Wang, H. H. Facile synthesis of ultrathin-shell graphene hollow spheres for high-performance lithium-ion batteries. Electrochim. Acta 2014, 139, 96–103.

24

Yu, S. H.; Lee, D. J.; Park, M.; Kwon, S. G.; Lee, H. S.; Jin, A. H.; Lee, K. S.; Lee, J. E.; Oh, M. H.; Kang, K. et al. Hybrid cellular nanosheets for high-performance lithium-ion battery anodes. J. Am. Chem. Soc. 2015, 137, 11954–11961.

25

Lee, S. H.; Yu, S. H.; Lee, J. E.; Jin, A. H.; Lee, D. J.; Lee, N.; Jo, H.; Shin, K.; Ahn, T. Y.; Kim, Y. W. et al. Selfassembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement. Nano Lett. 2013, 13, 4249–4256.

26

Oszajca, M. F.; Bodnarchuk, M. I.; Kovalenko, M. V. Precisely engineered colloidal nanoparticles and nanocrystals for Li-ion and Na-ion batteries: Model systems or practical solutions? Chem. Mater. 2014, 26, 5422–5432.

27

Jung, H. G.; Myung, S. T.; Yoon, C. S.; Son, S. B.; Oh, K. H.; Amine, K.; Scrosati, B.; Sun, Y. K. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy Environ. Sci. 2011, 4, 1345–1351.

28

Sun, C. W.; Rajasekhara, S.; Goodenough, J. B.; Zhou, F. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J. Am. Chem. Soc. 2011, 133, 2132–2135.

29

Fang, Y.; Gu, D.; Zou, Y.; Wu, Z. X.; Li, F. Y.; Che, R. C.; Deng, Y. H.; Tu, B.; Zhao, D. Y. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem., Int. Ed. 2010, 49, 7987–7991.

30

Wang, J.; Liu, H. Y.; Diao, J. Y.; Gu, X. M.; Wang, H. H.; Rong, J. F.; Zong, B. N.; Su, D. S. Size-controlled nitrogencontaining mesoporous carbon nanospheres by one-step aqueous self-assembly strategy. J. Mater. Chem. A 2015, 3, 2305–2313.

31

Li, Q.; Jiang, R. R.; Dou, Y. Q.; Wu, Z. X.; Huang, T.; Feng, D.; Yang, J. P.; Yu, A. S.; Zhao, D. Y. Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. Carbon 2011, 49, 1248–1257.

32

Yoon, S. B.; Chai, G. S.; Kang, S. K.; Yu, J. S.; Gierszal, K. P.; Jaroniec, M. Graphitized pitch-based carbons with ordered nanopores synthesized by using colloidal crystals as templates. J. Am. Chem. Soc. 2005, 127, 4188–4189.

33

Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

34

Bai, F.; Wang, D. S.; Huo, Z. Y.; Chen, W.; Liu, L. P.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. D. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew. Chem., Int. Ed. 2007, 46, 6650–6653.

35

Zhuang, J. Q.; Wu, H. M.; Yang, Y. A.; Cao, Y. C. Supercrystalline colloidal particles from artificial atoms. J. Am. Chem. Soc. 2007, 129, 14166–14167.

36

Jiao, Y. C.; Han, D. D.; Liu, L. M.; Ji, L.; Guo, G. N.; Hu, J. H.; Yang, D.; Dong, A. G. Highly ordered mesoporous few-layer graphene frameworks enabled by Fe3O4 nanocrystal superlattices. Angew. Chem., Int. Ed. 2015, 127, 5819–5823.

37

Jiao, Y. C.; Han, D. D.; Ding, Y.; Zhang, X. F.; Guo, G. N.; Hu, J. H.; Yang, D.; Dong, A. G. Fabrication of threedimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties. Nat. Commun. 2015, 6, 6420.

38

Zhao, Y. L. Bottom-up construction of highly ordered mesoporous graphene frameworks. Sci. Bull. 2015, 60, 1962–1963.

39

Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

40

Dong, A. G.; Chen, J.; Vora, P. M.; Kikkawa, J. M.; Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 2010, 466, 474–477.

41

Cui, C. J.; Qian, W. Z.; Yu, Y. T.; Kong, C. Y.; Yu, B.; Xiang, L.; Wei, F. Highly electroconductive mesoporous graphene nanofibers and their capacitance performance at 4 V. J. Am. Chem. Soc. 2014, 136, 2256–2259.

42

Han, X. G.; Liu, Y.; Jia, Z.; Chen, Y. C.; Wan, J. Y.; Weadock, N.; Gaskell, K. J.; Li, T.; Hu, L. B. Atomiclayer-deposition oxide nanoglue for sodium ion batteries. Nano Lett. 2014, 14, 139–147.

43

Zhu, H. L.; Jia, Z.; Chen, Y. C.; Weadock, N.; Wan, J. Y.; Vaaland, O.; Han, X. G.; Li, T.; Hu, L. B. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 2013, 13, 3093–3100.

44

Zhou, X. S.; Wan, L. J.; Guo, Y. G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152–2157.

45

Wang, R. H.; Xu, C. H.; Sun, J.; Gao, L.; Yao, H. L. Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage. ACS Appl. Mater. Interfaces 2014, 6, 3427–3436.

46

Liang, J.; Yu, X. Y.; Zhou, H.; Wu, H. B.; Ding, S. J.; Lou, X. W. D. Bowl-like SnO2@Carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2014, 53, 12803–12807.

47

Lin, J.; Peng, Z. W.; Xiang, C. S.; Ruan, G. D.; Yan, Z.; Natelson, D.; Tour, J. M. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 2013, 7, 6001–6006.

48

Wang, J. X.; Li, W.; Wang, F.; Xia, Y. Y.; Asiri, A. M.; Zhao, D. Y. Controllable synthesis of SnO2@C yolk–shell nanospheres as a high-performance anode material for lithium ion batteries. Nanoscale 2014, 6, 3217–3222.

49

Zhang, B.; Huang, J. Q.; Kim, J. K. Ultrafine amorphous SnOx embedded in carbon nanofiber/carbon nanotube composites for Li-ion and Na-ion batteries. Adv. Funct. Mater. 2015, 25, 5222–5228.

50

Huang, R. T.; Wang, L. J.; Zhang, Q.; Chen, Z. W.; Li, Z.; Pan, D. Y.; Zhao, B.; Wu, M. H.; Wu, C. M. L.; Shek, C. H. Irradiated graphene loaded with SnO2 quantum dots for energy storage. ACS Nano 2015, 9, 11351–11361.

51

Choi, S. H.; Lee, J. H.; Kang, Y. C. Perforated metal oxide–carbon nanotube composite microspheres with enhanced lithium-ion storage properties. ACS Nano 2015, 9, 10173–10185.

52

Qiu, H. Y.; Zeng, L. X.; Lan, T. B.; Ding, X. K.; Wei, M. D. In situ synthesis of GeO2/reduced graphene oxide composite on Ni foam substrate as a binder-free anode for high-capacity lithium-ion batteries. J. Mater. Chem. A 2015, 3, 1619–1623.

53

Ngo, D. T.; Kalubarme, R. S.; Le, H. T. T.; Park, C. N.; Park, C. J. Conducting additive-free amorphous GeO2/C composite as a high capacity and long-term stability anode for lithium ion batteries. Nanoscale 2015, 7, 2552–2560.

54

Li, X. N.; Liang, J. W.; Hou, Z. Q.; Zhu, Y. C.; Wang, Y.; Qian, Y. T. Coordination complex pyrolyzation for the synthesis of nanostructured GeO2 with high lithium storage properties. Chem. Commun. 2014, 50, 13956–13959.

55

Choi, S. H.; Jung, K. Y.; Kang, Y. C. Amorphous GeOx-coated reduced graphene oxide balls with sandwich structure for long-life lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 13952–13959.

56

Jin, S. X.; Li, N.; Cui, H.; Wang, C. X. Growth of the vertically aligned graphene@ amorphous GeOx sandwich nanoflakes and excellent Li storage properties. Nano Energy 2013, 2, 1128–1136.

57

Wei, W.; Guo, L. One-step in situ synthesis of GeO2/graphene composites anode for high-performance Li-ion batteries. Part. Part. Syst. Char. 2013, 30, 658–661.

58

Jia, F. F.; Song, L. X.; Wei, W.; Qu, P.; Xu, M. T. Facile one-pot method synthesis CNT–GeO2 nanocomposite for high performance Li ion battery anode material. New J. Chem. 2015, 39, 689–695.

59

Jahel, A.; Darwiche, A.; Matei Ghimbeu, C.; Vix-Guterl, C.; Monconduit, L. High cycleability nano-GeO2/Mesoporous carbon composite as enhanced energy storage anode material in Li-ion batteries. J. Power Sources 2014, 269, 755–759.

60

Zeng, L. X.; Huang, X. X.; Chen, X.; Zheng, C.; Qian, Q. R.; Chen, Q. H.; Wei, M. D. Ge/GeO2-ordered mesoporous carbon nanocomposite for rechargeable lithiumion batteries with a long-term cycling performance. ACS Appl. Mater. Interfaces 2016, 8, 232–239.

61

Jahel, A.; Ghimbeu, C. M.; Monconduit, L.; Vix-Guterl, C. Confined ultrasmall SnO2 particles in micro/mesoporous carbon as an extremely long cycle-life anode material for Li-ion batteries. Adv. Energy Mater. 2014, 4, 1400025.

File
nr-9-12-3757_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 June 2016
Revised: 01 August 2016
Accepted: 04 August 2016
Published: 13 September 2016
Issue date: December 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

A. D. acknowledges the financial support from the National Basic Research Program of China (No. 2014CB845602), Natural National Science Foundation of China (No. 21373052), Shanghai International Science and Technology Cooperation Project (Nos. 15520720100), and the "1000 Youth Talents" Plan. D. Y. is grateful for financial support from the Natural National Science Foundation of China (Nos. 51573030, 51573028, 51373035, and 51373040) and International Science and Technology Cooperation Program of China (No. 2014DFE40130).

Return