Journal Home > Volume 9 , Issue 12

We report a fuel-free, near-infrared (NIR)-driven Janus microcapsule motor. The Janus microcapsule motors were fabricated by template-assisted polyelectrolyte layer-by-layer assembly, followed by spraying of a gold layer on one side. The NIR-powered Janus motors achieved high propulsion with a maximum speed of 42 μm·s-1 in water. The propulsion mechanism of the Janus motor was attributed to the self-thermophoresis effect: The asymmetric distribution of the gold layer generated a local thermal gradient, which in turn generated thermophoretic force to propel the Janus motor. Such NIR-propelled Janus capsule motors can move efficiently in cell culture medium and have no obvious effects on the cell at the power of the NIR laser, indicating considerable promise for future biomedical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Near-infrared light-driven Janus capsule motors: Fabrication, propulsion, and simulation

Show Author's information Yingjie WuTieyan SiJingxin ShaoZhiguang Wu( )Qiang He( )
Key Laboratory of Microsystems and Microstructures ManufacturingMinistry of EducationMicro/Nanotechnology Research CentreHarbin Institute of TechnologyYi Kuang Jie 2Harbin150080China

Abstract

We report a fuel-free, near-infrared (NIR)-driven Janus microcapsule motor. The Janus microcapsule motors were fabricated by template-assisted polyelectrolyte layer-by-layer assembly, followed by spraying of a gold layer on one side. The NIR-powered Janus motors achieved high propulsion with a maximum speed of 42 μm·s-1 in water. The propulsion mechanism of the Janus motor was attributed to the self-thermophoresis effect: The asymmetric distribution of the gold layer generated a local thermal gradient, which in turn generated thermophoretic force to propel the Janus motor. Such NIR-propelled Janus capsule motors can move efficiently in cell culture medium and have no obvious effects on the cell at the power of the NIR laser, indicating considerable promise for future biomedical applications.

Keywords: layer-by-layer assembly, Janus micromotor, light-driven, active targeting, photothermal effect

References(49)

1

Wang, J.; Gao, W. Nano/microscale motors: Biomedical opportunities and challenges. ACS Nano 2012, 6, 5745–5751.

2

Mallouk, T. E.; Sen, A. Powering nanorobots. Sci. Am. 2009, 300, 72–77.

3

Gao, W.; Sattayasamitsathit, S.; Manesh, K. M.; Weihs, D.; Wang, J. Magnetically powered flexible metal nanowire motors. J. Am. Chem. Soc. 2010, 132, 14403–14405.

4

Mou, F. Z.; Chen, C. R.; Ma, H. R.; Yin, Y. X.; Wu, Q. Z.; Guan, J. G. Self-propelled micromotors driven by the magnesium-water reaction and their hemolytic properties. Angew. Chem., Int. Ed. 2013, 52, 7208–7212.

5

Wang, J. Nanomachines: Fundamentals and Applications; Wiley-VCH: Weinheim, Germany, 2013.

DOI
6

Sothmann, B.; Büttiker, M. Magnon-driven quantum-dot heat engine. Europhys. Lett. 2012, 99, 27001.

7

Jiang, H. -R.; Yoshinaga, N.; Sano, M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 2010, 105, 268302.

8

Wang, Y.; Li, Q. Light-driven chiral molecular switches or motors in liquid crystals. Adv. Mater. 2012, 24, 1926–1945.

9

Solovev, A. A.; Smith, E. J.; Bof'Bufon, C. C.; Sanchez, S.; Schmidt, O. G. Light-controlled propulsion of catalytic microengines. Angew. Chem., Int. Ed. 2011, 50, 10875–10878.

10

Wang, W.; Castro, L. A.; Hoyos, M.; Mallouk, T. E. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 2012, 6, 6122–6132.

11

Fusco, S.; Sakar, M. S.; Kennedy, S.; Peters, C.; Bottani, R.; Starsich, F.; Mao, A.; Sotiriou, G. A.; Pané, S.; Pratsinis, S. E. et al. An integrated microrobotic platform for on-demand, targeted therapeutic interventions. Adv. Mater. 2014, 26, 952–957.

12

Venugopalan, P. L.; Sai, R.; Chandorkar, Y.; Basu, B.; Shivashankar, S.; Ghosh, A. Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human blood. Nano Lett. 2014, 14, 1968–1975.

13

Loget, G.; Kuhn, A. Electric field-induced chemical locomotion of conducting objects. Nat. Commun. 2011, 2, 535.

14

Pumera, M. Electrochemically powered self-propelled electrophoretic nanosubmarines. Nanoscale 2010, 2, 1643–1649.

15

Ariga, K.; Lvov, Y. M.; Kawakami, K.; Ji, Q. M.; Hill, J. P. Layer-by-layer self-assembled shells for drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 762–771.

16

Ju, G. N.; Cheng, M. J.; Xiao, M.; Xu, J. M.; Pan, K.; Wang, X.; Zhang, Y. J.; Shi, F. Smart transportation between three phases through a stimulus-responsive functionally cooperating device. Adv. Mater. 2013, 25, 2915–2919.

17

Fan, D. L.; Zhu, F. Q.; Cammarata, R. C.; Chien, C. L. Controllable high-speed rotation of nanowires. Phys. Rev. Lett. 2005, 94, 247208.

18

Ozin, G. A.; Manners, I.; Fournier-Bidoz, S.; Arsenault, A. Dream nanomachines. Adv. Mater. 2005, 17, 3011–3018.

19

Wilson, D. A.; Nolte, R. J. M.; van Hest, J. C. M. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 2012, 4, 268–274.

20

Mei, Y. F.; Solovev, A. A.; Sanchez, S.; Schmidt, O. G. Rolled-up nanotech on polymers: From basic perception to self-propelled catalytic microengines. Chem. Soc. Rev. 2011, 40, 2109–2119.

21

Wang, H.; Pumera, M. Fabrication of micro/nanoscale motors. Chem. Rev. 2015, 115, 8704–8735.

22

Wu, Y. J.; Wu, Z. G.; Lin, X. K.; He, Q.; Li, J. B. Autonomous movement of controllable assembled Janus capsule motors. ACS Nano 2012, 6, 10910–10916.

23

Manjare, M.; Yang, B.; Zhao, Y. -P. Bubble driven quasioscillatory translational motion of catalytic micromotors. Phys. Rev. Lett. 2012, 109, 128305.

24

Sánchez, S.; Soler, L.; Katuri, J. Chemically powered micro- and nanomotors. Angew. Chem., Int. Ed. 2015, 54, 1414–1444.

25

Eelkema, R.; Pollard, M. M.; Katsonis, N.; Vicario, J.; Broer, D. J.; Feringa, B. L. Rotational reorganization of doped cholesteric liquid crystalline films. J. Am. Chem. Soc. 2006, 128, 14397–14407.

26

Bisoyi, H. K.; Li, Q. Light-directing chiral liquid crystal nanostructures: From 1D to 3D. Acc. Chem. Res. 2014, 47, 3184–3195.

27

Wu, Z. G.; Lin, X. K.; Wu, Y. J.; Si, T. Y.; Sun, J. M.; He, Q. Near-infrared light-triggered "on/off" motion of polymer multilayer rockets. ACS Nano 2014, 8, 6097–6105.

28

Han, L. -H.; Wu, S. M.; Condit, J. C.; Kemp, N. J.; Milner, T. E.; Feldman, M. D.; Chen, S. C. Light-powered micromotor driven by geometry-assisted, asymmetric photon-heating and subsequent gas convection. Appl. Phys. Lett. 2010, 96, 213509.

29

Howard, K. A.; Dong, M. D.; Oupicky, D.; Bisht, H. S.; Buss, C.; Besenbacher, F.; Kjems, J. Nanocarrier stimuliactivated gene delivery. Small 2007, 3, 54–57.

30

Ballarín-González, B.; Dagnaes-Hansen, F.; Fenton, R. A.; Gao, S.; Hein, S.; Dong, M.; Kjems, J.; Howard, K. A. Protection and systemic translocation of siRNA following oral administration of chitosan/siRNA nanoparticles. Mol. Ther. -Nucleic Acids 2013, 2, e76.

31

Hess, M.; Koepke, P.; Schult, I. Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc. 1998, 79, 831–844.

32

Mou, F. Z.; Chen, C. R.; Zhong, Q.; Yin, Y. X.; Ma, H. R.; Guan, J. G. Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS Appl. Mater. Interfaces 2014, 6, 9897–9903.

33

Cheng, M. J.; Liu, Q.; Ju, G. N.; Zhang, Y. J.; Jiang, L.; Shi, F. Bell-shaped superhydrophilic-superhydrophobic-superhydrophilic double transformation on a pH-responsive smart surface. Adv. Mater. 2014, 26, 306–310.

34

Lee, T. -C.; Alarcón-Correa, M.; Miksch, C.; Hahn, K.; Gibbs, J. G.; Fischer, P. Self-propelling nanomotors in the presence of strong Brownian forces. Nano Lett. 2014, 14, 2407–2412.

35

Zong, Y. W.; Liu, J.; Liu, R.; Guo, H. L.; Yang, M. C.; Li, Z. Y.; Chen, K. An optically driven bistable Janus rotor with patterned metal coatings. ACS Nano 2015, 9, 10844–10851.

36

Li, J.; Rozen, I.; Wang, J.; Rocket science at the nanoscale. ACS Nano, 2016, 10, 5619–5634.

37

Qiu, T.; Lee, T. C.; Mark, A. G.; Morozov, K. I.; Münster, R.; Mierka, O.; Turek, S.; Leshansky, A. M.; Fischer, P. Swimming by reciprocal motion at low Reynolds number. Nat. Commun. 2014, 5, 5119.

38

Yan, X. H.; Zhou, Q.; Yu, J. F.; Xu, T. T.; Deng, Y.; Tang, T.; Feng, Q.; Bian, L. M.; Zhang, Y.; Ferreira, A. et al. Magnetite nanostructured porous hollow helical microswimmers for targeted delivery. Adv. Funct. Mater. 2015, 25, 5333–5342.

39

Palacci, J.; Sacanna, S.; Vatchinsky, A.; Chaikin, P. M.; Pine, D. J. Photoactivated colloidal dockers for cargo transportation. J. Am. Chem. Soc. 2013, 135, 15978–15981.

40

Paxton, W. F.; Kistler, K. C.; Olmeda, C. C.; Sen, A.; St. Angelo, S. K.; Cao, Y. Y.; Mallouk, T. E.; Lammert, P. E.; Crespi, V. H. Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc. 2004, 126, 13424–13431.

41

Li, L. Q.; Wang, J. Y.; Li, T. L.; Song, W. P.; Zhang, G. Y. Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: Model and experiment. Soft Matter 2014, 10, 7511–7518.

42

Soler, L.; Magdanz, V.; Fomin, V. M.; Sanchez, S.; Schmidt, O. G. Self-propelled micromotors for cleaning polluted water. ACS Nano 2013, 7, 9611–9620.

43

Loget, G.; Kuhn, A. Propulsion of microobjects by dynamic bipolar self-regeneration. J. Am. Chem. Soc. 2010, 132, 15918–15919.

44

Choi, W. I.; Sahu, A.; Kim, Y. H.; Tae, G. Photothermal cancer therapy and imaging based on gold nanorods. Ann. Biomed. Eng. 2012, 40, 534–546.

45

Zhao, J.; Fei, J. B.; Gao, L.; Cui, W.; Yang, Y.; Wang, A. H.; Li, J. B. Bioluminescent microcapsules: Applications in activating a photosensitizer. Chem. —Eur. J. 2013, 19, 4548–4555.

46

Du, C. L.; Zhao, J.; Fei, J. B.; Cui, Y.; Li, J. B. Assembled microcapsules by doxorubicin and polysaccharide as high effective anticancer drug carriers. Adv. Healthc. Mater. 2013, 2, 1246–1251.

47

Donath, E.; Sukhorukov, G. B.; Caruso, F.; Davis, S. A.; Möhwald, H. Novel hollow polymer shells by colloidtemplated assembly of polyelectrolytes. Angew. Chem., Int. Ed. 1998, 37, 2201–2205.

48

Parekh, G.; Pattekari, P.; Joshi, C.; Shutava, T.; DeCoster, M.; Levchenko, T.; Torchilin, V.; Lvov, Y. Layer-by-layer nanoencapsulation of camptothecin with improved activity. Int. J. Pharm. 2014, 465, 218–227.

49

Kozhunova, E.; Ji, Q. M.; Hill, J. P.; Ariga, K. Hollow capsules fabricated by template polymerization of Nvinylcaprolactam. J. Nanosci. Nanotechnol. 2015, 15, 2389–2393.

File
nr-9-12-3747_ESM.pdf (433.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 April 2016
Revised: 31 July 2016
Accepted: 04 August 2016
Published: 13 September 2016
Issue date: December 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21573053). The project was supported by State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology).

Return