Journal Home > Volume 9 , Issue 12

A flexible and transparent triboelectric nanogenerator (FT-TENG) has great potential for application in self-powered biosensor systems, electronic skin and wearable electronic devices. However, improving the output performance with little damage to its optical properties is challenging. Herein, we have developed an FT-TENG that has a well-ordered nest-like porous polydimethylsiloxane (NP-PDMS) film and graphene transparent electrodes. The NP-PDMS film with ordered pores is fabricated by hydrochloric acid etching of 500 nm sized ZnO spheres made of aggregated nanoparticles, having a light transmittance of 81.8% and a water contact angle of 118.62°. The FT-TENG based on the NP-PDMS film with a porosity of 12%, gives a maximum output of 271 V and 7.8 μA, which are respectively, 3.7 and 2.1-fold of those of a TENG with a flat PDMS film. The peak output power reaches 0.39 mW with a load resistance of 9.01 MΩ. The dielectric constant and effective thickness of the NP-PDMS film and the capacitance and charge transfer of the FT-TENG are systematically investigated. This work provides a novel and effective method to enhance the performance of FT-TENGs with little damage to their optical properties.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Flexible and transparent triboelectric nanogenerator based on high performance well-ordered porous PDMS dielectric film

Show Author's information Xianming He1,2,3Xiaojing Mu2,3Quan Wen2,3Zhiyu Wen2,3Jun Yang4Chenguo Hu1( )Haofei Shi4( )
Department of Applied PhysicsChongqing UniversityChongqing400044China
Key Laboratory of Fundamental Science of Micro/Nano-Device and System TechnologyChongqing UniversityChongqing400044China
Microsystem Research CenterChongqing UniversityChongqing400044China
Key Laboratory of Multi-Scale Manufacturing TechnologyChongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing400714China

Abstract

A flexible and transparent triboelectric nanogenerator (FT-TENG) has great potential for application in self-powered biosensor systems, electronic skin and wearable electronic devices. However, improving the output performance with little damage to its optical properties is challenging. Herein, we have developed an FT-TENG that has a well-ordered nest-like porous polydimethylsiloxane (NP-PDMS) film and graphene transparent electrodes. The NP-PDMS film with ordered pores is fabricated by hydrochloric acid etching of 500 nm sized ZnO spheres made of aggregated nanoparticles, having a light transmittance of 81.8% and a water contact angle of 118.62°. The FT-TENG based on the NP-PDMS film with a porosity of 12%, gives a maximum output of 271 V and 7.8 μA, which are respectively, 3.7 and 2.1-fold of those of a TENG with a flat PDMS film. The peak output power reaches 0.39 mW with a load resistance of 9.01 MΩ. The dielectric constant and effective thickness of the NP-PDMS film and the capacitance and charge transfer of the FT-TENG are systematically investigated. This work provides a novel and effective method to enhance the performance of FT-TENGs with little damage to their optical properties.

Keywords: transparent electrode, porous polydimethylsiloxane (PDMS), surface charge density, nanogenerator, flexibility

References(37)

1

Jeong, C. K.; Park, K. I.; Son, J. H.; Hwang, G. T.; Lee, S. H.; Park, D. Y.; Lee, H. E.; Lee, H. K.; Byun, M.; Lee, K. J. Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ. Sci. 2014, 7, 4035–4043.

2

Jeong, C. K.; Lee, J.; Han, S.; Ryu, J.; Hwang, G. T.; Park, D. Y.; Park, J. H.; Lee, S. S.; Byun, M.; Ko, S. H. et al. A hyper-stretchable elastic-composite energy harvester. Adv. Mater. 2015, 27, 2866–2875.

3

Hinchet, R.; Seung, W.; Kim, S. -W. Recent progress on flexible triboelectric nanogenerators for self-powered electronics. ChemSusChem 2015, 8, 2327–2344.

4

Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.

5

Kim, S.; Gupta, M. K.; Lee, K. Y.; Sohn, A.; Kim, T. Y.; Shin, K. -S.; Kim, D.; Kim, S. K.; Lee, K. H.; Shin, H. -J. et al. Transparent flexible graphene triboelectric nanogenerators. Adv. Mater. 2014, 26, 3918–3925.

6

Zhou, T.; Zhang, L. M.; Xue, F.; Tang, W.; Zhang, C.; Wang, Z. L. Multilayered electret films based triboelectric nanogenerator. Nano Res. 2016, 9, 1442–1451.

7

Zhong, J. W.; Zhang, Y.; Zhong, Q. Z.; Hu, Q. Y.; Hu, B.; Wang, Z. L.; Zhou, J. Fiber-based generator for wearable electronics and mobile medication. ACS Nano 2014, 8, 6273–6280.

8

Zhang, L. M.; Xue, F.; Du, W. M.; Han, C. B.; Zhang, C.; Wang, Z. L. Transparent paper-based triboelectric nanogenerator as a page mark and anti-theft sensor. Nano Res. 2014, 7, 1215–1223.

9

Fan, F. -R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and selfpowered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

10

Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

11

Guo, H. Y.; Wen, Z.; Zi, Y. L.; Yeh, M. H.; Wang, J.; Zhu, L. P.; Hu, C. G.; Wang, Z. L. A water-proof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 2016, 6, 1501593.

12

Wang, J.; Li, X. H.; Zi, Y. L.; Wang, S. H.; Li, Z. L.; Zheng, L.; Yi, F.; Li, S. M.; Wang, Z. L. A flexible fiberbased supercapacitor–triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 2015, 27, 4830–4836.

13

Huang, L. B.; Bai, G. X.; Wong, M. C.; Yang, Z. B.; Xu, W.; Hao, J. H. Magnetic-assisted noncontact triboelectric nanogenerator converting mechanical energy into electricity and light emissions. Adv. Mater. 2016, 28, 2744–2751.

14

Guo, H. Y.; He, X. M.; Zhong, J. W.; Zhong, Q. Z.; Leng, Q.; Hu, C. G.; Chen, J.; Tian, L.; Xi, Y.; Zhou, J. A nanogenerator for harvesting airflow energy and light energy. J. Mater. Chem. A 2014, 2, 2079–2087.

15

Zi, Y. L.; Wang, J.; Wang, S. H.; Li, S. M.; Wen, Z.; Guo, H. Y.; Wang, Z. L. Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 2016, 7, 10987.

16

Shin, S. -Y.; Saravanakumar, B.; Ramadoss, A.; Kim, S. J. Fabrication of PDMS-based triboelectric nanogenerator for self-sustained power source application. Int. J. Energ. Res. 2016, 40, 288–297.

17

Xiao, X. Z.; Lü, C.; Wang, G.; Xu, Y.; Wang, J. P.; Yang, H. Flexible triboelectric nanogenerator from micro-nano structured polydimethylsiloxane. Chem. Res. Chinese U. 2015, 31, 434–438.

18

Yun, B. K.; Kim, J. W.; Kim, H. S.; Jung, K. W.; Yi, Y.; Jeong, M. -S.; Ko, J. -H.; Jung, J. H. Base-treated polydimethylsiloxane surfaces as enhanced triboelectric nanogenerators. Nano Energy 2015, 15, 523–529.

19

Fan, F. R.; Luo, J. J.; Tang, W.; Li, C. Y.; Zhang, C. P.; Tian, Z. Q.; Wang, Z. L. Highly transparent and flexible triboelectric nanogenerators: Performance improvements and fundamental mechanisms. J. Mater. Chem. A 2014, 2, 13219–13225.

20

Seung, W.; Gupta, M. K.; Lee, K. Y.; Shin, K. -S.; Lee, J. -H.; Kim, T. Y.; Kim, S.; Lin, J. J.; Kim, J. H.; Kim, S. -W. Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 2015, 9, 3501–3509.

21

Lee, S. H.; Ko, Y. H.; Yu, J. S. Facile fabrication and characterization of arch-shaped triboelectric nanogenerator with a graphite top electrode. Phys. Status Solidi A 2015, 212, 401–405.

22

Jang, D. J.; Kim, Y.; Kim, T. Y.; Koh, K.; Jeong, U.; Cho, J. Force-assembled triboelectric nanogenerator with highhumidity-resistant electricity generation using hierarchical surface morphology. Nano Energy 2016, 20, 283–293.

23

Lee, S.; Ko, W.; Oh, Y.; Lee, J.; Baek, G.; Lee, Y.; Sohn, J.; Cha, S.; Kim, J.; Park, J.; Hong, J. Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies. Nano Energy 2015, 12, 410–418.

24

Zhu, Y. B.; Yang, B.; Liu, J. Q.; Wang, X. Z.; Chen, X.; Yang, C. S. An integrated flexible harvester coupled triboelectric and piezoelectric mechanisms using PDMS/MWCNT and PVDF. J. Microelectromech. S. 2015, 24, 513–515.

25

He, X. M.; Guo, H. Y.; Yue, X. L.; Gao, J.; Xia, Y.; Hu, C. G. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale 2015, 7, 1896–1903.

26

Chun, J.; Kim, J. W.; Jung, W. -S.; Kang, C. -Y.; Kim, S. -W.; Wang, Z. L.; Baik, J. M. Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci. 2015, 8, 3006–3012.

27

Chen, J.; Guo, H. Y.; He, X. M.; Liu, G. L.; Xi, Y.; Shi, H. F.; Hu, C. G. Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl. Mater. Interfaces 2016, 8, 736–744.

28

Lee, K. Y.; Chun, J.; Lee, J. H.; Kim, K. N.; Kang, N. R.; Kim, J. Y.; Kim, M. H.; Shin, K. S.; Gupta, M. K.; Baik, J. M. et al. Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 2014, 26, 5037–5042.

29

Dudem, B.; Ko, Y. H.; Leem, J. W.; Lee, S. H.; Yu, J. S. Highly transparent and flexible triboelectric nanogenerators with subwavelength-architectured polydimethylsiloxane by a nanoporous anodic aluminum oxide template. ACS Appl. Mater. Interfaces 2015, 7, 20520–20529.

30

Jeong, C. K.; Baek, K. M.; Niu, S. M.; Nam, T. W.; Hur, Y. H.; Park, D. Y.; Hwang, G. -T.; Byun, M.; Wang, Z. L.; Jung, Y. S. et al. Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett. 2014, 14, 7031–7038.

31

Juárez-Moreno, J. A.; ávila-Ortega, A.; Oliva, A. I.; Avilés, F.; Cauich-Rodríguez, J. V. Effect of wettability and surface roughness on the adhesion properties of collagen on PDMS films treated by capacitively coupled oxygen plasma. Appl. Surf. Sci. 2015, 349, 763–773.

32

Peng, F. P.; Ni, Y. R.; Zhou, Q.; Kou, J. H.; Lu, C. H.; Xu, Z. Z. Fabrication of a flexible graphene-TiO2/PDMS photocatalytic film by combining air atmospheric pressure glow discharge treatment. Chem. Eng. Process. 2016, 101, 8–15.

33

Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, J. Q.; Zhang, H. Graphene-based electrodes. Adv. Mater. 2012, 24, 5979–6004.

34

Guo, H. Y.; He, X. M.; Hu, C. G.; Tian, Y. S.; Xi, Y.; Chen, J.; Tian, L. Effect of particle size in aggregates of ZnO-aggregate-based dye-sensitized solar cells. Electrochim. Acta 2014, 120, 23–29.

35

Shahzad, M. I.; Giorcelli, M.; Shahzad, N.; Guastella, S.; Castellino, M.; Jagdale, P.; Tagliaferro, A. Study of carbon nanotubes based polydimethylsiloxane composite films. J. Phys. 2013, 439, 012010.

36

Mao, Y. C.; Zhao, P.; McConohy, G.; Yang, H.; Tong, Y. X.; Wang, X. D. Sponge-like piezoelectric polymer films for scalable and integratable nanogenerators and self-powered electronic systems. Adv. Energy Mater. 2014, 4, 1301624.

37

Lee, J. H.; Hinchet, R.; Kim, S. K.; Kim, S.; Kim, S. W. Shape memory polymer-based self-healing triboelectric nanogenerator. Energy Environ. Sci. 2015, 8, 3605–3613.

File
nr-9-12-3714_ESM.pdf (839.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 June 2016
Revised: 30 July 2016
Accepted: 31 July 2016
Published: 10 September 2016
Issue date: December 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51572040), the National High-tech R & D Program of China (No. 2015AA034801) and the large-scale equipment sharing fund of Chongqing University.

Return