Journal Home > Volume 9 , Issue 12

Self-powered ZnO/perovskite heterostructured ultraviolet (UV) photodetectors (PDs) based on the pyro-phototronic effect have been recently reported as a promising solution for energy-efficient, ultrafast-response, and high-performance UV PDs. In this study, the temperature dependence of the pyro-phototronic effect on the photo-sensing performance of self-powered ZnO/perovskite heterostructured PDs was investigated. The current responses of these PDs to UV light were enhanced by 174.1% at 77 K and 28.7% at 300 K owing to the improved pyro-phototronic effect at low temperatures. The fundamentals of the pyro-phototronic effect were thoroughly studied by analyzing the chargetransfer process and the time constant of the current response of the PDs upon UV illumination. This work presents in-depth understandings about the pyrophototronic effect on the ZnO/perovskite heterostructure and provides guidance for the design and development of corresponding optoelectronics for ultrafast photo sensing, optothermal detection, and biocompatible optoelectronic probes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Temperature dependence of pyro-phototronic effect on self-powered ZnO/perovskite heterostructured photodetectors

Show Author's information Wenbo Peng1,2,§Ruomeng Yu1,§Xingfu Wang1,§Zhaona Wang1Haiyang Zou1Yongning He2Zhong Lin Wang1,3( )
School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlanta, Georgia, 30332-0245USA
School of Electronic and Information EngineeringXi'an Jiaotong UniversityXi'an710049China
Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China

§ These authors contributed equally to this work.

Abstract

Self-powered ZnO/perovskite heterostructured ultraviolet (UV) photodetectors (PDs) based on the pyro-phototronic effect have been recently reported as a promising solution for energy-efficient, ultrafast-response, and high-performance UV PDs. In this study, the temperature dependence of the pyro-phototronic effect on the photo-sensing performance of self-powered ZnO/perovskite heterostructured PDs was investigated. The current responses of these PDs to UV light were enhanced by 174.1% at 77 K and 28.7% at 300 K owing to the improved pyro-phototronic effect at low temperatures. The fundamentals of the pyro-phototronic effect were thoroughly studied by analyzing the chargetransfer process and the time constant of the current response of the PDs upon UV illumination. This work presents in-depth understandings about the pyrophototronic effect on the ZnO/perovskite heterostructure and provides guidance for the design and development of corresponding optoelectronics for ultrafast photo sensing, optothermal detection, and biocompatible optoelectronic probes.

Keywords: perovskite, temperature dependence, ZnO, self-powered, pyro-phototronic effect

References(31)

1

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242-246.

2

Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 2009, 4, 34-39.

3

Wu, W. Z.; Wen, X. N.; Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 2013, 340, 952-957.

4

Ju, S.; Lee, K.; Janes, D. B.; Yoon, M. -H.; Facchetti, A.; Marks, T. J. Low operating voltage single ZnO nanowire field-effect transistors enabled by self-assembled organic gate nanodielectrics. Nano Lett. 2005, 5, 2281-2286.

5

Wu, W. Z.; Wei, Y. G.; Wang, Z. L. Strain-gated piezotronic logic nanodevices. Adv. Mater. 2010, 22, 4711-4715.

6

Yu, R. M.; Wu, W. Z.; Pan, C. F.; Wang, Z. N.; Ding, Y.; Wang, Z. L. Piezo-phototronic boolean logic and computation using photon and strain dual-gated nanowire transistors. Adv. Mater. 2015, 27, 940-947.

7

Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897- 1899.

8

Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 2013, 7, 752-758.

9

Kim, D. C.; Jung, B. O.; Kwon, Y. H.; Cho, H. K. Highly sensible ZnO nanowire ultraviolet photodetectors based on mechanical schottky contact. J. Electrochem. Soc. 2012, 159, K10-K14.

10

Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003-1009.

11

Wang, Z. N.; Yu, R. M.; Wen, X. N.; Liu, Y.; Pan, C. F.; Wu, W. Z.; Wang, Z. L. Optimizing performance of silicon- based p-n junction photodetectors by the piezo-phototronic effect. ACS Nano 2014, 8, 12866-12873.

12

Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S. J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301.

13

Jin, Y. Z.; Wang, J. P.; Sun, B. Q.; Blakesley, J. C.; Greenham, N. C. Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett. 2008, 8, 1649-1653.

14

Dai, J.; Xu, C. X.; Xu, X. Y.; Guo, J. Y.; Li, J. T.; Zhu, G. Y.; Lin, Y. Single ZnO microrod ultraviolet photodetector with high photocurrent gain. ACS Appl. Mater. Interfaces 2013, 5, 9344-9348.

15

Ryu, Y. R.; Lee, T. S.; Lubguban, J. A.; White, H. W.; Park, Y. S.; Youn, C. J. ZnO devices: Photodiodes and p-type field-effect transistors. Appl. Phys. Lett. 2005, 87, 153504.

16

Peng, W. B.; He, Y. N.; Wen, C. B.; Ma, K. Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer. Sens. Actuat. A: Phys. 2012, 184, 34-40.

17

Peng, W. B.; He, Y. N.; Zhao, X. L.; Liu, H.; Kang, X.; Wen, C. B. Study on the performance of ZnO nanomaterial- based surface acoustic wave ultraviolet detectors. J. Micromech. Microeng. 2013, 23, 125008.

18

Ahn, S. E.; Lee, J. S.; Kim, H.; Kim, S.; Kang, B. H.; Kim, K. H.; Kim, G. T. Photoresponse of sol-gel-synthesized ZnO nanorods. Appl. Phys. Lett. 2004, 84, 5022-5024.

19

Keem, K.; Kim, H.; Kim, G. T.; Lee, J. S.; Min, B.; Cho, K.; Sung, M. Y.; Kim, S. Photocurrent in ZnO nanowires grown from Au electrodes. Appl. Phys. Lett. 2004, 84, 4376-4378.

20

Jeong, M. C.; Oh, B. Y.; Lee, W.; Myoung, J. M. Optoelectronic properties of three-dimensional ZnO hybrid structure. Appl. Phys. Lett. 2005, 86, 103105.

21

Hu, Y. F.; Zhou, J.; Yeh, P. H.; Li, Z.; Wei, T. Y.; Wang, Z. L. Supersensitive, fast-response nanowire sensors by using schottky contacts. Adv. Mater. 2010, 22, 3327-3332.

22

Cheng, G.; Wu, X. H.; Liu, B.; Li, B.; Zhang, X. T.; Du, Z. L. ZnO nanowire schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed. Appl. Phys. Lett. 2011, 99, 203105.

23

Wang, Z. N.; Yu, R. M.; Pan, C. F.; Li, Z. L.; Yang, J.; Yi, F.; Wang, Z. L. Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nat. Commun. 2015, 6, 8401.

24

Heiland, G.; Ibach, H. Pyroelectricity of zinc oxide. Solid State Commun. 1966, 4, 353-356.

25

Hsiao, C. C.; Yu, S. Y. Improved response of ZnO films for pyroelectric devices. Sensors 2012, 12, 17007-17022.

26

Hsiao, C. C.; Huang, S. W.; Chang, R. C. Temperature field analysis for ZnO thin-film pyroelectric devices with partially covered electrode. Sens. Mater. 2012, 24, 421-441.

27

Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; John Wiley & Sons: New Jersey, 2007.

28

Lubomirsky, I.; Stafsudd, O. Invited review article: Practical guide for pyroelectric measurements. Rev. Sci. Instrum. 2012, 83, 051101.

29

Alvarez-Quintana, J.; Martínez, E.; Pérez-Tijerina, E.; Pérez- García, S. A.; Rodríguez-Viejo, J. Temperature dependent thermal conductivity of polycrystalline ZnO films. J. Appl. Phys. 2010, 107, 063713.

30

Zhao, Y.; Yan, Y. K.; Kumar, A.; Wang, H.; Porter, W. D.; Priya, S. Thermal conductivity of self-assembled nano- structured ZnO bulk ceramics. J. Appl. Phys. 2012, 112, 034313.

31

Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088-4093.

File
nr-9-12-3695_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 June 2016
Revised: 26 July 2016
Accepted: 28 July 2016
Published: 10 September 2016
Issue date: December 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences (No. DE-FG02-07ER46394). W. B. P. would like to thank for the support from China Scholarship Council (CSC).

Return