Journal Home > Volume 9 , Issue 11

This paper reports an overpotential-dependent shape evolution of gold nanocrystals (Au NCs) in a choline chloride-urea (ChCl-urea) based deep eutectic solvent (DES). It was found that the growth overpotentials play a key role in tuning the shape of Au NCs. The shape evolution of Au NCs successively from concave rhombic dodecahedra (RD) to concave cubes, octopods, cuboctahedral boxes, and finally, to hollow octahedra (OH) was achieved by carefully controlling the growth overpotentials in the range from –0.50 to –0.95 V (vs. Pt quasi-reference electrode). In addition, the presence of urea was important in the shape evolution of Au NCs. The surface structure of the as-prepared Au NCs was comprehensively characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical studies. It was demonstrated that the electrocatalytic activity of the as-prepared Au NCs for D-glucose electrooxidation was sensitively dependent on their morphologies. The results illustrated that the dehydrogenated glucose adsorbed on concave RD and concave cubic Au NCs was preferentially transformed to gluconolactone at low electrode potentials. Subsequent gluconolactone oxidation occurred favorably on octopods with {111}-truncated arms and hollow OH at high electrode potential. This study opens up a new approach to develop the surface-structurecontrolled growth of Au NCs by combining DES with electrochemical techniques. In addition, it is significant for the tuning of the electrocatalytic properties of NCs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Overpotential-dependent shape evolution of gold nanocrystals grown in a deep eutectic solvent

Show Author's information Lu Wei1,2( )Bangan Lu2Mingjun Sun2Na Tian2Zhiyou Zhou2Binbin Xu2Xinsheng Zhao1Shigang Sun2( )
School of Physics and Electronic EngineeringJiangsu Normal UniversityXuzhou221116China
College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China

Abstract

This paper reports an overpotential-dependent shape evolution of gold nanocrystals (Au NCs) in a choline chloride-urea (ChCl-urea) based deep eutectic solvent (DES). It was found that the growth overpotentials play a key role in tuning the shape of Au NCs. The shape evolution of Au NCs successively from concave rhombic dodecahedra (RD) to concave cubes, octopods, cuboctahedral boxes, and finally, to hollow octahedra (OH) was achieved by carefully controlling the growth overpotentials in the range from –0.50 to –0.95 V (vs. Pt quasi-reference electrode). In addition, the presence of urea was important in the shape evolution of Au NCs. The surface structure of the as-prepared Au NCs was comprehensively characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical studies. It was demonstrated that the electrocatalytic activity of the as-prepared Au NCs for D-glucose electrooxidation was sensitively dependent on their morphologies. The results illustrated that the dehydrogenated glucose adsorbed on concave RD and concave cubic Au NCs was preferentially transformed to gluconolactone at low electrode potentials. Subsequent gluconolactone oxidation occurred favorably on octopods with {111}-truncated arms and hollow OH at high electrode potential. This study opens up a new approach to develop the surface-structurecontrolled growth of Au NCs by combining DES with electrochemical techniques. In addition, it is significant for the tuning of the electrocatalytic properties of NCs.

Keywords: electrochemical synthesis, gold nanocrystals, shape evolution, deep eutectic solvent, glucose electrooxidation

References(48)

1

Zhang, J.; Langille, M. R.; Personick, M. L.; Zhang, K.; Li, S. Y.; Mirkin, C. A. Concave cubic gold nanocrystals with high-index facets. J. Am. Chem. Soc. 2010, 132, 14012–14014.

2

Zhang, J. H.; Xi, C. X.; Feng, C.; Xia, H. B.; Wang, D. Y.; Tao, X. T. High yield seedless synthesis of high-quality gold nanocrystals with various shapes. Langmuir 2014, 30, 2480–2489.

3

Jiang, Q. N.; Jiang, Z. Y.; Zhang, L.; Lin, H. X.; Yang, N.; Li, H.; Liu, D. Y.; Xie, Z. X.; Tian, Z. Q. Synthesis and high electrocatalytic performance of hexagram shaped gold particles having an open surface structure with kinks. Nano Res. 2011, 4, 612–622.

4

Liao, H. -G.; Jiang, Y. -X.; Zhou, Z. -Y.; Chen, S. -P.; Sun, S. -G. Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angew. Chem., Int. Ed. 2008, 47, 9100–9103.

5

Zhang, L. F.; Zhang, C. Y. Controlled growth of concave gold nanobars with high surface-enhanced Raman-scattering and excellent catalytic activities. Nanoscale 2013, 5, 5794–5800.

6

Hong, J. W.; Lee, S. U.; Lee, Y. W.; Han, S. W. Hexoctahedral Au nanocrystals with high-index facets and their optical and surface-enhanced Raman scattering properties. J. Am. Chem. Soc. 2012, 134, 4565–4568.

7

Niu, W. X.; Zheng, S. L.; Wang, D. W.; Liu, X. Q.; Li, H. J.; Han, S. A.; Chen, J. A.; Tang, Z. Y.; Xu, G. B. Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. J. Am. Chem. Soc. 2009, 131, 697–703.

8

Zhang, Q. B.; Xie, J. P.; Yu, Y.; Yang, J. H.; Lee, J. Y. Tuning the crystallinity of Au nanoparticles. Small 2010, 6, 523–527.

9

Ming, T.; Feng, W.; Tang, Q.; Wang, F.; Sun, L. D.; Wang, J. F.; Yan, C. H. Growth of tetrahexahedral gold nanocrystals with high-index facets. J. Am. Chem. Soc. 2009, 131, 16350–16351.

10

Li, J.; Wang, L. H.; Liu, L.; Guo, L. D.; Han, X. D.; Zhang, Z. Synthesis of tetrahexahedral Au nanocrystals with exposed high-index surfaces. Chem. Commun. 2010, 46, 5109–5111.

11

Kim, D. Y.; Im, S. H.; Park, O. O. Synthesis of tetrahexahedral gold nanocrystals with high-index facets. Cryst. Growth Des. 2010, 10, 3321–3323.

12

Lu, F.; Zhang, Y.; Zhang, L. H.; Zhang, Y. G.; Wang, J. X.; Adzic, R. R.; Stach, E. A.; Gang, O. Truncated ditetragonal gold prisms as nanofacet activators of catalytic platinum. J. Am. Chem. Soc. 2011, 133, 18074–18077.

13

Tran, T. T.; Lu, X. M. Synergistic effect of Ag and Pd ions on shape-selective growth of polyhedral Au nanocrystals with high-index facets. J. Phys. Chem. C 2011, 115, 3638–3645.

14

Yu, Y.; Zhang, Q. B.; Lu, X. M.; Lee, J. Y. Seed-mediated synthesis of monodisperse concave trisoctahedral gold nanocrystals with controllable sizes. J. Phys. Chem. C 2010, 114, 11119–11126.

15

Ma, Y. Y.; Kuang, Q.; Jiang, Z. Y.; Xie, Z. X.; Huang, R. B.; Zheng, L. S. Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Angew. Chem., Int. Ed. 2008, 47, 8901–8904.

16

Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626.

17

Monzó, J.; Koper, M. T. M.; Rodriguez, P. Removing polyvinylpyrrolidone from catalytic Pt nanoparticles without modification of superficial order. ChemPhysChem 2012, 13, 709–715.

18

Long, N. V.; Ohtaki, M.; Nogami, M.; Hien, T. D. Effects of heat treatment and poly(vinylpyrrolidone) (PVP) polymer on electrocatalytic activity of polyhedral Pt nanoparticles towards their methanol oxidation. Colloid Polym. Sci. 2011, 289, 1373–1386.

19

Miguel-García, I.; Berenguer-Murcia, Á.; García, T.; Cazorla-Amorós, D. Effect of the aging time of PVP coated palladium nanoparticles colloidal suspensions on their catalytic activity in the preferential oxidation of CO. Catal. Today 2012, 187, 2–9.

20

Li, D. G.; Wang, C.; Tripkovic, D.; Sun, S. H.; Markovic, N. M.; Stamenkovic, V. R. Surfactant removal for colloidal nanoparticles from solution synthesis: The effect on catalytic performance. ACS Catal. 2012, 2, 1358–1362.

21

Vidal-Iglesias, F. J.; Solla-Gullón, J.; Herrero, E.; Montiel, V.; Aldaz, A.; Feliu, J. M. Evaluating the ozone cleaning treatment in shape-controlled Pt nanoparticles: Evidences of atomic surface disordering. Electrochem. Commun. 2011, 13, 502–505.

22

Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Novel solvent properties of choline chloride/ urea mixtures. Chem. Commun. 2003, 70–71.

23

Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147.

24

Abbott, A. P.; Harris, R. C.; Ryder, K. S. Application of hole theory to define ionic liquids by their transport properties. J. Phys. Chem. B 2007, 111, 4910–4913.

25

Kareem, M. A.; Mjalli, F. S.; Hashim, M. A.; AlNashef, I. M. Phosphonium-based ionic liquids analogues and their physical properties. J. Chem. Eng. Data 2010, 55, 4632–4637.

26

Wei, L.; Fan, Y. -J.; Tian, N.; Zhou, Z. -Y.; Zhao, X. -Q.; Mao, B. -W.; Sun, S. -G. Electrochemically shape-controlled synthesis in deep eutectic solvents—A new route to prepare Pt nanocrystals enclosed by high-index facets with high catalytic activity. J. Phys. Chem. C 2012, 116, 2040–2044.

27

Wei, L.; Zhou, Z. -Y.; Chen, S. -P.; Xu, C. -D.; Su, D.; Schuster, M. E.; Sun, S. -G. Electrochemically shapecontrolled synthesis in deep eutectic solvents: Triambic icosahedral platinum nanocrystals with high-index facets and their enhanced catalytic activity. Chem. Commun. 2013, 49, 11152–11154.

28

Wei, L.; Xu, C. -D.; Huang, L.; Zhou, Z. -Y.; Chen, S. -P.; Sun, S. -G. Electrochemically shape-controlled synthesis of Pd concave-disdyakis triacontahedra in deep eutectic solvent. J. Phys. Chem. C 2016, 120, 15569–15577.

29

Aldous, L.; Silvester, D. S.; Villagrán, C.; Pitner, W. R.; Compton, R. G.; Cristina Lagunas, M.; Hardacre, C. Electrochemical studies of gold and chloride in ionic liquids. New J. Chem. 2006, 30, 1576–1583.

30

Oyama, T.; Yamaguchi, S.; Rahman, M. R.; Okajima, T.; Ohsaka, T.; Oyama, N. EQCM study of the [AuCl4]--[AuCl2]--Au(0) redox system in 1-ethyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquid. Langmuir 2010, 26, 9069–9075.

31

Abbott, A. P.; Capper, G.; Gray, S. Design of improved deep eutectic solvents using hole theory. ChemPhysChem 2006, 7, 803–806.

32

D'Agostino, C.; Harris, R. C.; Abbott, A. P.; Gladden, L. F.; Mantle, M. D. Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1H pulsed field gradient NMR spectroscopy. Phys. Chem. Chem. Phys. 2011, 13, 21383–21391.

33

Scharifker, B.; Hills, G. Theoretical and experimental studies of multiple nucleation. Electrochim. Acta 1983, 28, 879–889.

34

Langerock, S.; Heerman, L. Study of the electrodeposition of rhodium on polycrystalline gold electrodes by quartz microbalance and voltammetric techniques. J. Electrochem. Soc. 2004, 151, C155–C160.

35

Meng, M.; Fang, Z. C.; Zhang, C.; Su, H. Y.; He, R.; Zhang, R. P.; Li, H. L.; Li, Z. -Y.; Wu, X. J.; Ma, C.; Zeng, J. Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core–shell planar tetrapods with size-dependent optical properties. Nano Lett. 2016, 16, 3036–3041.

36

Zhu, C.; Zeng, J.; Tao, J.; Johnson, M. C.; Schmidt-Krey, I.; Blubaugh, L.; Zhu, Y. M.; Gu, Z. Z.; Xia, Y. N. Kinetically controlled overgrowth of Ag or Au on Pd nanocrystal seeds: From hybrid dimers to nonconcentric and concentric bimetallic nanocrystals. J. Am. Chem. Soc. 2012, 134, 15822–15831.

37

Zhang, H.; Jin, M. S.; Xia, Y. N. Noble-metal nanocrystals with concave surfaces: Synthesis and applications. Angew. Chem., Int. Ed. 2012, 51, 7656–7673.

38

Yu, T.; Kim, D. Y.; Zhang, H.; Xia, Y. N. Platinum concave nanocubes with high-index facets and their enhanced activity for oxygen reduction reaction. Angew. Chem., Int. Ed. 2011, 50, 2773–2777.

39

Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angew. Chem., Int. Ed. 2011, 50, 7850–7854.

40

Hammons, J. A.; Muselle, T.; Ustarroz, J.; Tzedaki, M.; Raes, M.; Hubin, A.; Terryn, H. Stability, assembly, and particle/solvent interactions of Pd nanoparticles electrodeposited from a deep eutectic solvent. J. Phys. Chem. C 2013, 117, 14381–14389.

41

Abbott, A. P.; Barron, J. C.; Frisch, G.; Gurman, S.; Ryder, K. S.; Silva, A. F. Double layer effects on metal nucleation in deep eutectic solvents. Phys. Chem. Chem. Phys. 2011, 13, 10224–10231.

42

Li, J.; Zheng, Y. Q.; Zeng, J.; Xia, Y. N. Controlling the size and morphology of Au@Pd core–shell nanocrystals by manipulating the kinetics of seeded growth. Chem. —Eur. J. 2012, 18, 8150–8156.

43

Chernov, A. A. Theory of the stability of face forms of crystals. Sov. Phys. Cryst. 1972, 16, 734–753.

44

Hamelin, A. Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces. J. Electroanal. Chem. 1996, 407, 1–11.

45

Hamelin, A.; Martins, A. M. Cyclic voltammetry at gold single-crystal surfaces. Part 2. Behaviour of high-index faces. J. Electroanal. Chem. 1996, 407, 13–21.

46

Trasatti, S.; Petrii, O. A. Real surface area measurements in electrochemistry. Pure Appl. Chem. 1991, 63, 711–734.

47

Tominaga, M.; Shimazoe, T.; Nagashima, M.; Taniguchi, I. Electrocatalytic oxidation of glucose at gold nanoparticlemodified carbon electrodes in alkaline and neutral solutions. Electrochem. Commun. 2005, 7, 189–193.

48

Pasta, M.; Ruffo, R.; Falletta, E.; Mari, C. M.; Della Pina, C. Alkaline glucose oxidation on nanostructured gold electrodes. Gold Bull. 2010, 43, 57–64.

File
12274_2016_1236_MOESM1_ESM.pdf (4.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 May 2016
Revised: 29 July 2016
Accepted: 30 July 2016
Published: 31 August 2016
Issue date: November 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This study was supported financially by the National Natural Science Foundation of China (Nos. 21361140374, 21229301, 21378113, and 21573183) and the Natural Science Fund project in Jiangsu Province, China (No.BK20160210).

Return