AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Defects as a factor limiting carrier mobility in WSe2: A spectroscopic investigation

Zhangting Wu1Zhongzhong Luo2Yuting Shen3Weiwei Zhao4Wenhui Wang1Haiyan Nan1Xitao Guo1Litao Sun3Xinran Wang2Yumeng You5( )Zhenhua Ni1( )
Department of Physics and Jiangsu Key Laboratory for Advanced Metallic MaterialsSoutheast UniversityNanjing211189China
National Laboratory of Solid State MicrostructureSchool of Electronic Science and EngineeringNational Center of Microstructures and Quantum ManipulationNanjing UniversityNanjing210093China
SEU-FEI Nano-Pico CenterKey Laboratory of MEMS of the Ministry of EducationSoutheast UniversityNanjing210096China
Jiangsu Key Laboratory for Design and Fabrication of Micro-Nano Biomedical InstrumentsSchool of Mechanical EngineeringSoutheast UniversityNanjing211189China
Ordered Matter Science Research CenterSoutheast UniversityNanjing211189China
Show Author Information

Graphical Abstract

Abstract

The electrical performance of two-dimensional transition metal dichalcogenides (TMDs) is strongly affected by the number of structural defects. In this work, we provide an optical spectroscopic characterization approach to correlate the number of structural defects and the electrical performance of WSe2 devices. Low-temperature photoluminescence (PL) spectra of electron-beam-lithographyprocessed WSe2 exhibit a clear defect-induced PL emission due to excitons bound to defects, which would strongly degrade the electrical performance. By adopting an electron-beam-free transfer-electrode technique, we successfully prepared a backgated WSe2 device containing a limited amount of defects. A maximum hole mobility of approximately 200 cm2·V-1·s-1 was achieved because of the reduced scattering sources, which is the highest reported value for this type of device. This work provides not only a versatile and nondestructive method to monitor the defects in TMDs but also a new route to approach the room-temperature phonon-limited mobility in high-performance TMD devices.

Electronic Supplementary Material

Download File(s)
nr-9-12-3622_ESM.pdf (898.7 KB)

References

1

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two- dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.

2

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

3

Eda, G.; Maier, S. A. Two-dimensional crystals: Managing light for optoelectronics. ACS Nano 2013, 7, 5660-5665.

4

Lembke, D.; Kis, A. Breakdown of high-performance monolayer MoS2 transistors. ACS Nano 2012, 6, 10070-10075.

5

Zhou, H. L.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Weiss, N. O.; Lin, Z. Y.; Huang, Y. et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 2015, 15, 709-713.

6

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.

7

Hong, J. H.; Hu, Z. X.; Probert, M.; Li, K.; Lv, D. H.; Yang, X. N.; Gu, L.; Mao, N. N.; Feng, Q. L.; Xie, L. M. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293.

8

Ong, Z. Y.; Fischetti, M. V. Mobility enhancement and temperature dependence in top-gated single-layer MoS2. Phys. Rev. B 2013, 88, 165316.

9

Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 2642.

10

Zhu, W. J.; Low, T.; Lee, Y. -H.; Wang, H.; Farmer, D. B.; Kong, J.; Xia, F. N.; Avouris, P. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 2014, 5, 3087.

11

Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z. -Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.

12

Gao, L. B.; Ni, G. -X.; Liu, Y. P.; Liu, B.; Neto, A. H. C.; Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190-194.

13

Lin, Y. -C.; Björkman, T.; Komsa, H. -P.; Teng, P. -Y.; Yeh, C. -H.; Huang, F. -S.; Lin, K. -H.; Jadczak, J.; Huang, Y. -S.; Chiu, P. -W. et al. Three-fold rotational defects in two- dimensional transition metal dichalcogenides. Nat. Commun. 2015, 6, 6736.

14

Lin, J. H.; Pantelides, S. T.; Zhou, W. Vacancy-induced formation and growth of inversion domains in transition- metal dichalcogenide monolayer. ACS Nano 2015, 9, 5189- 5197.

15

Addou, R.; Mcdonnell, S.; Barrera, D.; Guo, Z. B.; Azcatl, A.; Wang, J.; Zhu, H.; Hinkle, C. L.; Quevedo-Lopez, M.; Alshareef, H. N. et al. Impurities and electronic property variations of natural MoS2 crystal surfaces. ACS Nano 2015, 9, 9124-9133.

16

Fuhr, J. D.; Saúl, A.; Sofo, J. O. Scanning tunneling microscopy chemical signature of point defects on the MoS2(0001) surface. Phys. Rev. Lett. 2004, 92, 026802.

17

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48-53.

18

Mignuzzi, S.; Pollard, A. J.; Bonini, N.; Brennan, B.; Gilmore, I. S.; Pimenta, M. A.; Richards, D.; Roy, D. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 2015, 91, 195411.

19

Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J. et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged, and free excitons. Sci. Rep. 2013, 3, 2657.

20

Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273-291.

21

Nan, H. Y.; Wang, Z. L.; Wang, W. H.; Liang, Z.; Lu, Y.; Chen, Q.; He, D. W.; Tan, P. H.; Miao, F.; Wang, X. R. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738-5745.

22

Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 2012, 12, 3925-3930.

23

Ni, Z. H.; Ponomarenko, L. A.; Nair, R. R.; Yang, R.; Anissimova, S.; Grigorieva, I. V.; Schedin, F.; Blake, P.; Shen, Z. X.; Hill, E. H. et al. On resonant scatterers as a factor limiting carrier mobility in graphene. Nano Lett. 2010, 10, 3868-3872.

24

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

25

Liu, Y. L.; Nan, H. Y.; Wu, X.; Pan, W.; Wang, W. H.; Bai, J.; Zhao, W. W.; Sun, L. T.; Wang, X. R.; Ni, Z. H. Layer-by- Layer thinning of MoS2 by plasma. ACS Nano 2013, 7, 4202-4209.

26

He, D. W.; Zhang, Y. H.; Wu, Q. S.; Xu, R.; Nan, H. Y.; Liu, J. F.; Yao, J. J.; Wang, Z. L.; Yuan, S. J.; Li, Y. et al. Two- dimensional quasi-freestanding molecular crystals for high- performance organic field-effect transistors. Nat. Commun. 2014, 5, 5162.

27

Qiu, H.; Pan, L. J.; Yao, Z. N.; Li, J. J.; Shi, Y.; Wang, X. R. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 2012, 100, 123104.

28

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

29

Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634-638.

30

Yan, T. F.; Qiao, X. F.; Liu, X. N.; Tan, P. H.; Zhang, X. H. Photoluminescence properties and exciton dynamics in monolayer WSe2. Appl. Phys. Lett. 2014, 105, 101901.

31

Yuan, S. J.; Roldán, R.; Katsnelson, M. I.; Guinea, F. Effect of point defects on the optical and transport properties of MoS2 and WS2. Phys. Rev. B 2014, 90, 041402.

32

Bacher, G.; Schweizer, H.; Kovac, J.; Forchel, A.; Nickel, H.; Schlapp, W.; Lösch, R. Influence of barrier height on carrier dynamics in strained InxGa1-xAs/GaAs quantum wells. Phys. Rev. B 1991, 43, 9312(R).

33

Zhang, X. X.; You, Y. M.; Zhao, S. Y. F.; Heinz, T. F. Experimental evidence for dark excitons in monolayer WSe2. Phys. Rev. Lett. 2015, 115, 257403.

34

You, Y. M.; Zhang, X. X.; Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R.; Heinz, T. F. Observation of biexcitons in monolayer WSe2. Nat. Phys. 2015, 11, 477-481.

35

Schmidt, T.; Lischka, K.; Zulehner, W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 1992, 45, 8989-8994.

36

Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788- 3792.

37

Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phonon- limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 2012, 85, 115317.

38

Zhang, W. J.; Chiu, M. -H.; Chen, C. -H.; Chen, W.; Li, L. -J.; Wee, A. T. S. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 2014, 8, 8653-8661.

39

Ma, Y. Q.; Liu, B. L.; Zhang, A. Y.; Chen, L.; Fathi, M.; Shen, C. F.; Abbas, A. N.; Ge, M. Y.; Mecklenburg, M.; Zhou, C. W. Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano 2015, 9, 7383-7391.

40

Chen, J. Y.; Liu, B.; Liu, Y. P.; Tang, W.; Nai, C. T.; Li, L. J.; Zheng, J.; Gao, L. B.; Zheng, Y.; Shin, H. S. et al. Chemical vapor deposition of large-sized hexagonal WSe2 crystals on dielectric substrates. Adv. Mater. 2015, 27, 6722-6727.

41

Cui, Y.; Xin, R.; Yu, Z. H.; Pan, Y. M.; Ong, Z. -Y.; Wei, X. X.; Wang, J. Z.; Nan, H. Y.; Ni, Z. H.; Wu, Y. et al. High- performance monolayer WS2 field-effect transistors on high-k dielectrics. Adv. Mater. 2015, 27, 5230-5234.

42

Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two- dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731-1737.

Nano Research
Pages 3622-3631
Cite this article:
Wu Z, Luo Z, Shen Y, et al. Defects as a factor limiting carrier mobility in WSe2: A spectroscopic investigation. Nano Research, 2016, 9(12): 3622-3631. https://doi.org/10.1007/s12274-016-1232-5

835

Views

141

Crossref

N/A

Web of Science

139

Scopus

0

CSCD

Altmetrics

Received: 05 June 2016
Revised: 22 July 2016
Accepted: 25 July 2016
Published: 01 September 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return