Journal Home > Volume 9 , Issue 11

Graphene, a two-dimensional material with extraordinary electrical, thermal, and elastic performance, is a potential candidate for future technologies. However, the superior properties of graphene have not yet been realized for graphenederived macroscopic structures such as graphene fibers. In this study, we systematically investigated the temperature (T)-dependent transport and thermoelectric properties of graphene fiber, including the thermal conductivity (λ), electrical conductivity (σ), and Seebeck coefficient (S). λ increases from 45.8 to 149.7 W·m–1·K–1 and then decreases as T increases from 80 to 290 K, indicating the boundary-scattering and three-phonon Umklapp scattering processes. σ increases with T from 7.1 × 104 to 1.18 × 105 S·m–1, which can be best explained by the hopping mechanism. S ranges from–3.9 to 0.8 μV·K–1 and undergoes a sign transition at approximately 100 K.


menu
Abstract
Full text
Outline
About this article

Systematic characterization of transport and thermoelectric properties of a macroscopic graphene fiber

Show Author's information Weigang Ma1,§Yingjun Liu2,§Shen Yan1,3,§Tingting Miao4Shaoyi Shi1Mincheng Yang2Xing Zhang1( )Chao Gao2( )
Key Laboratory for Thermal Science and Power Engineering of Ministry of EducationDepartment of Engineering MechanicsTsinghua UniversityBeijing100084China
MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringKey Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang ProvinceZhejiang UniversityHangzhou310027China
Department of Thermal EngineeringTsinghua UniversityBeijing100084China
Key Laboratory of Process Fluid Filtration and SeparationCollege of Mechanical and Transportation EngineeringChina University of PetroleumBeijingBeijing102249China

§These authors contributed equally to this work.

Abstract

Graphene, a two-dimensional material with extraordinary electrical, thermal, and elastic performance, is a potential candidate for future technologies. However, the superior properties of graphene have not yet been realized for graphenederived macroscopic structures such as graphene fibers. In this study, we systematically investigated the temperature (T)-dependent transport and thermoelectric properties of graphene fiber, including the thermal conductivity (λ), electrical conductivity (σ), and Seebeck coefficient (S). λ increases from 45.8 to 149.7 W·m–1·K–1 and then decreases as T increases from 80 to 290 K, indicating the boundary-scattering and three-phonon Umklapp scattering processes. σ increases with T from 7.1 × 104 to 1.18 × 105 S·m–1, which can be best explained by the hopping mechanism. S ranges from–3.9 to 0.8 μV·K–1 and undergoes a sign transition at approximately 100 K.

Keywords: thermal conductivity, electrical conductivity, Seebeck coefficient, thermoelectric properties, macroscopic graphene fiber

References(85)

1

Cibin, C.; Leuchtmann, P.; Gimersky, M.; Vahldieck, R.; Moscibroda, S. A flexible wearable antenna. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Monterey, CA, USA, 2015, pp 3589–3592.

2

Tripathi, A. K.; Smits, E. C. P.; van der Putten, J. B. P. H.; van Neer, M.; Myny, K.; Nag, M.; Steudel, S.; Vicca, P.; O'Neill, K.; van Veenendaal, E. et al. Low-voltage galliumindium-zinc-oxide thin film transistors based logic circuits on thin plastic foil: Building blocks for radio frequency identification application. Appl. Phys. Lett. 2011, 98, 162102.

3

Luo, H. J.; Wellenius, P.; Lunardi, L.; Muth, J. F. Transparent IGZO-based logic gates. IEEE Electr. Device L. 2012, 33, 673–675.

4

Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428, 911–918.

5

Pang, C.; Lee, C.; Suh, K. -Y. Recent advances in flexible sensors for wearable and implantable devices. J. Appl. Polym. Sci. 2013, 130, 1429–1441.

6

Stassi, S.; Canavese, G.; Cauda, V.; Fallauto, C.; Corbellini, S.; Motto, P.; Demarchi, D.; Pirri, C. F. Wearable and flexible pedobarographic insole for continuous pressure monitoring. In Proceedings of the 2013 IEEE Sensors, Baltimore, MD, USA, 2013, pp 1–4.

7

Kou, L.; Huang, T. Q.; Zheng, B. N.; Han, Y.; Zhao, X. L.; Gopalsamy, K.; Sun, H. Y.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754.

8

Bolotin, K. I.; Sikes, K. J.; Hone, J.; Stormer, H. L.; Kim, P. Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 2008, 101, 096802.

9

Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.

10

Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

11

Jang, W.; Chen, Z.; Bao, W. Z.; Lau, C. N.; Dames, C. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett. 2010, 10, 3909–3913.

12

Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X. S.; Yao, Z.; Huang, R.; Broido, D. et al. Two-dimensional phonon transport in supported graphene. Science 2010, 328, 213–216.

13

Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.

14

Konstantinova, E.; Dantas, S. O.; Barone, P. M. V. B. Electronic and elastic properties of two-dimensional carbon planes. Phys. Rev. B 2006, 74, 035417.

15

Liu, F.; Ming, P. B.; Li, J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 2007, 76, 064120.

16

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

17

Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

18

Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, J. Q.; Zhang, H. Graphene-based electrodes. Adv. Mater. 2012, 24, 5979–6004.

19

Wu, D. Q.; Zhang, F.; Liang, H. W.; Feng, X. L. Nanocomposites and macroscopic materials: Assembly of chemically modified graphene sheets. Chem. Soc. Rev. 2012, 41, 6160–6177.

20

Xu, Z.; Gao, C. Graphene in macroscopic order: Liquid crystals and wet-spun fibers. Acc. Chem. Res. 2014, 47, 1267–1276.

21

Watcharotone, S.; Dikin, D. A.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G. H. B.; Evmenenko, G.; Wu, S. E.; Chen, S. F.; Liu, C. P. et al. Graphene-silica composite thin films as transparent conductors. Nano Lett. 2007, 7, 1888–1892.

22

Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

23

Han, Y.; Xu, Z.; Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 2013, 23, 3693–3700.

24

Hu, M.; Mi, B. X. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 2013, 47, 3715–3723.

25

Xu, Z.; Liu, Z.; Sun, H. Y.; Gao, C. Highly electrically conductive Ag-doped graphene fibers as stretchable conductors. Adv. Mater. 2013, 25, 3249–3253.

26

Li, Z.; Liu, Z.; Sun, H. Y.; Gao, C. Superstructured assembly of nanocarbons: Fullerenes, nanotubes, and graphene. Chem. Rev. 2015, 115, 7046–7117.

27

Cheng, H. H.; Hu, C. G.; Zhao, Y.; Qu, L. T. Graphene fiber: A new material platform for unique applications. NPG Asia Mater. 2014, 6, e113.

28

Xu, Z.; Gao, C. Graphene fiber: A new trend in carbon fibers. Mater. Today 2015, 18, 480–492.

29

Meng, F. C.; Lu, W. B.; Li, Q. W.; Byun, J. H.; Oh, Y.; Chou, T. W. Graphene-based fibers: A review. Adv. Mater. 2015, 27, 5113–5131.

30

Xin, G. Q.; Yao, T. K.; Sun, H. T.; Scott, S. M.; Shao, D.; Wang, G. K.; Lian, J. Highly thermally conductive and mechanically strong graphene fibers. Science 2015, 349, 1083–1087.

31

Xu, Z.; Liu, Y. J.; Zhao, X. L.; Peng, L.; Sun, H. Y.; Xu, Y.; Ren, X. B.; Jin, C. H.; Xu, P.; Wang, M. et al. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater., in press, DOI: 10.1002/adma. 201506426

32

Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

33

Ghosh, S.; Bao, W. Z.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C. N.; Balandin, A. A. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 2010, 9, 555–558.

34

Cruz-Silva, R.; Morelos-Gomez, A.; Kim, H. I.; Jang, H. -K.; Tristan, F.; Vega-Diaz, S.; Rajukumar, L. P.; Elías, A. L.; Perea-Lopez, N.; Suhr, J. et al. Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling. ACS Nano 2014, 8, 5959–5967.

35

Gaier, J. R.; Slabe, M. E.; Stahl, M. Effect of heat-treatment temperature of vapor-grown graphite fibers Ⅱ. Stability of their bromine intercalation compounds. Synth. Met. 1989, 31, 241–249.

36

Finegan, I. C.; Tibbetts, G. G. Electrical conductivity of vapor-grown carbon fiber/thermoplastic composites. J. Mater. Res. 2001, 16, 1668–1674.

37

Arai, S.; Endo, M.; Kaneko, N. Ni-deposited multi-walled carbon nanotubes by electrodeposition. Carbon 2004, 42, 641–644.

38

Aboutalebi, S. H.; Jalili, R.; Esrafilzadeh, D.; Salari, M.; Gholamvand, Z.; Yamini, S. A.; Konstantinov, K.; Shepherd, R. L.; Chen, J.; Moulton, S. E. et al. High-performance multifunctional graphene yarns: Toward wearable all-carbon energy storage textiles. ACS Nano 2014, 8, 2456–2466.

39

Campos-Delgado, J.; Kim, Y. A.; Hayashi, T.; Morelos-Gómez, A.; Hofmann, M.; Muramatsu, H.; Endo, M.; Terrones, H.; Shull, R. D.; Dresselhaus, M. S. et al. Thermal stability studies of CVD-grown graphene nanoribbons: Defect annealing and loop formation. Chem. Phys. Lett. 2009, 469, 177–182.

40

Saito, R.; Hofmann, M.; Dresselhaus, G.; Jorio, A.; Dresselhaus, M. S. Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 2011, 60, 413–550.

41

Fujii, M.; Zhang, X.; Xie, H. Q.; Ago, H.; Takahashi, K.; Ikuta, T.; Abe, H.; Shimizu, T. Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 2005, 95, 065502.

42

Ma, W. G.; Miao, T. T.; Zhang, X.; Takahashi, K.; Ikuta, T.; Zhang, B. P.; Ge, Z. H. A T-type method for characterization of the thermoelectric performance of an individual freestanding single crystal Bi2S3 nanowire. Nanoscale 2016, 8, 2704–2710.

43

Zhang, X.; Fujiwara, S.; Fujii, M. Measurements of thermal conductivity and electrical conductivity of a single carbon fiber. Int. J. Thermophys. 2000, 21, 965–980.

44

Nika, D. L.; Pokatilov, E. P.; Askerov, A. S.; Balandin, A. A. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B 2009, 79, 155413.

45

Cai, W. W.; Moore, A. L.; Zhu, Y. W.; Li, X. S.; Chen, S. S.; Shi, L.; Ruoff, R. S. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010, 10, 1645–1651.

46

Chen, S. S.; Li, Q. Y.; Zhang, Q. M.; Qu, Y.; Ji, H. X.; Ruoff, R. S.; Cai, W. W. Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping. Nanotechnology 2012, 23, 365701.

47

Aksamija, Z.; Knezevic, I. Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering. Appl. Phys. Lett. 2011, 98, 141919.

48

Nicklow, R.; Wakabayashi, N.; Smith, H. G. Lattice dynamics of pyrolytic graphite. Phys. Rev. B 1972, 5, 4951–4962.

49

Berber, S.; Kwon, Y. K.; Tomanek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4613–4616.

50

Klemens, P. G. Theory of the a-plane thermal conductivity of graphite. J. Wide Bandgap Mater. 2000, 7, 332–339.

51

Klemens, P. G. Theory of thermal conduction in thin ceramic films. Int. J. Thermophys. 2001, 22, 265–275.

52

Chen, S. S.; Moore, A. L.; Cai, W. W.; Suk, J. W.; An, J.; Mishra, C.; Amos, C.; Magnuson, C. W.; Kang, J. Y.; Shi, L. et al. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. ACS Nano 2011, 5, 321–328.

53

Lee, J. U.; Yoon, D.; Kim, H.; Lee, S. W.; Cheong, H. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys. Rev. B, 2011, 83, 081419.

54

Chen, S. S.; Wu, Q. Z.; Mishra, C.; Kang, J. Y.; Zhang, H. J.; Cho, K.; Cai, W. W.; Balandin, A. A.; Ruoff, R. S. Thermal conductivity of isotopically modified graphene. Nat. Mater. 2012, 11, 203–207.

55

Kong, B. D.; Paul, S.; Nardelli, M. B.; Kim, K. W. Firstprinciples analysis of lattice thermal conductivity in monolayer and bilayer graphene. Phys. Rev. B 2009, 80, 033406.

56

Singh, D.; Murthy, J. Y.; Fisher, T. S. Mechanism of thermal conductivity reduction in few-layer graphene. J. Appl. Phys. 2011, 110, 044317.

57

Faugeras, C.; Faugeras, B.; Orlita, M.; Potemski, M.; Nair, R. R.; Geim, A. K. Thermal conductivity of graphene in corbino membrane geometry. ACS Nano 2010, 4, 1889–1892.

58

Jauregui, L. A.; Yue, Y.; Sidorov, A. N.; Hu, J. N.; Yu, Q. K.; Lopez, G.; Jalilian, R.; Benjamin, D. K.; Delk, D. A.; Wu, W. et al. Thermal transport in graphene nanostructures: Experiments and simulations. ECS Trans. 2010, 28, 73–83.

59

Xu, Z.; Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2011, 2, 571.

60

Xu, Z.; Sun, H. Y.; Zhao, X. L.; Gao, C. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 2013, 25, 188–193.

61

Ozkan, T.; Naraghi, M.; Chasiotis, I. Mechanical properties of vapor grown carbon nanofibers. Carbon 2010, 48, 239–244.

62

Banerjee, S.; Chakravorty, D. Electrical resistivity of coppersilica nanocomposites synthesized by electrodeposition. J. Appl. Phys. 1998, 84, 1149–1151.

63

Ma, Y. G.; Liu, H. J.; Ong, C. K. Electron transport properties in CoAlO composite antidot arrays. Europhys. Lett. 2006, 76, 1144–1150.

64

Xu, Z.; Zhang, Y.; Li, P. G.; Gao, C. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 2012, 6, 7103–7113.

65

Mott, N. Conduction in Non-Crystalline Materials, 2nd ed.; Oxford University Press: Oxford, 1993.

66

Sidorov, A. N.; Sherehiy, A.; Jayasinghe, R.; Stallard, R.; Benjamin, D. K.; Yu, Q. K.; Liu, Z. H.; Wu, W.; Cao, H. L.; Chen, Y. P. et al. Thermoelectric power of graphene as surface charge doping indicator. Appl. Phys. Lett. 2011, 99, 013115.

67

Gao, M.; Pan, Y.; Zhang, C. D.; Hu, H.; Yang, R.; Lu, H. L.; Cai, J. M.; Du, S. X.; Liu, F.; Gao, H. J. Tunable interfacial properties of epitaxial graphene on metal substrates. Appl. Phys. Lett. 2010, 96, 053109.

68

Nam, S. G.; Ki, D. K.; Lee, H. J. Thermoelectric transport of massive Dirac fermions in bilayer graphene. Phys. Rev. B 2010, 82, 245416.

69

Wang, Z. Q.; Xie, R. G.; Bui, C. T.; Liu, D.; Ni, X. X.; Li, B. W.; Thong, J. T. L. Thermal transport in suspended and supported few-layer graphene. Nano Lett. 2011, 11, 113–118.

70

Babichev, A. V.; Gasumyants, V. E.; Butko, V. Y. Resistivity and thermopower of graphene made by chemical vapor deposition technique. J. Appl. Phys. 2013, 113, 076101.

71

Hewitt, C. A.; Kaiser, A. B.; Craps, M.; Czerw, R.; Roth, S.; Carroll, D. L. Temperature dependent thermoelectric properties of freestanding few layer graphene/polyvinylidene fluoride composite thin films. Synth. Met. 2013, 165, 56–59.

72

Barnard, R. D. Thermoelectricity in Metals and Alloys; Halsted Press: New York, 1972.

73

Xiao, N.; Dong, X. C.; Song, L.; Liu, D. Y.; Tay, Y. Y.; Wu, S. X.; Li, L. -J.; Zhao, Y.; Yu, T.; Zhang, H. et al. Enhanced thermopower of graphene films with oxygen plasma treatment. ACS Nano 2011, 5, 2749–2755.

74

Mazzamuto, F.; Hung Nguyen, V.; Apertet, Y.; Caër, C.; Chassat, C.; Saint-Martin, J.; Dollfus, P. Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. Phys. Rev. B 2011, 83, 235426.

75

Zhang, H. -L.; Li, J. -F.; Zhang, B. -P.; Yao, K. -F.; Liu, W. -S.; Wang, H. Electrical and thermal properties of carbon nanotube bulk materials: Experimental studies for the 328–958 K temperature range. Phys. Rev. B 2007, 75, 205407.

76

Karamitaheri, H.; Pourfath, M.; Faez, R.; Kosina, H. Geometrical effects on the thermoelectric properties of ballistic graphene antidot lattices. J. Appl. Phys. 2011, 110, 054506.

77

Ni, X. X.; Liang, G.; Wang, J. -S.; Li, B. W. Disorder enhances thermoelectric figure of merit in armchair graphane nanoribbons. Appl. Phys. Lett. 2009, 95, 192114.

78

Chang, P. -H.; Nikolic, B. K. Edge currents and nanopore arrays in zigzag and chiral graphene nanoribbons as a route toward high-ZT thermoelectrics. Phys. Rev. B 2012, 86, 041406.

79

Sevinçli, H.; Sevik, C.; Çagin, T.; Cuniberti, G. A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons. Sci. Rep. 2013, 3, 1228.

80

Haskins, J.; Kinaci, A.; Sevik, C.; Sevinçli, H.; Cuniberti, G.; Çagin, T. Control of thermal and electronic transport in defect-engineered graphene nanoribbons. ACS Nano 2011, 5, 3779–3787.

81

Wei, N.; Xu, L. Q.; Wang, H. -Q.; Zheng, J. -C. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility. Nanotechnology 2011, 22, 105705.

82

Lu, Y.; Song, Y.; Wang, F. P. Thermoelectric properties of graphene nanosheets-modified polyaniline hybrid nanocomposites by an in situ chemical polymerization. Mater. Chem. Phys. 2013, 138, 238–244.

83

Liang, B. B.; Song, Z. J.; Wang, M. H.; Wang, L. J.; Jiang, W. Fabrication and thermoelectric properties of graphene/Bi2Te3 composite materials. J. Nanomater. 2013, 2013, Article ID 210767.

84

Chen, H. J.; Yang, C. Y.; Liu, H. L.; Zhang, G. H.; Wan, D. Y.; Huang, F. Q. Thermoelectric properties of CuInTe2/graphene composites. CrystEngComm 2013, 15, 6648–6651.

85

Dong, J. D.; Liu, W.; Li, H.; Su, X. L.; Tang, X. F.; Uher, C. In situ synthesis and thermoelectric properties of PbTe–graphene nanocomposites by utilizing a facile and novel wet chemical method. J. Mater. Chem. A 2013, 1, 12503–12511.

Publication history
Copyright
Acknowledgements

Publication history

Received: 01 June 2016
Revised: 21 July 2016
Accepted: 25 July 2016
Published: 01 September 2016
Issue date: November 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.51406236, 51576105, 51327001, 51336009, 51636002, 21325417 and 51533008), the Science Foundation of China University of Petroleum, Beijing (Nos.2462013YJRC027, and 2462015YQ0402), the Science Fund for Creative Research Groups (No. 51321002), and Tsinghua University Initiative Scientific Research Program.

Return