Journal Home > Volume 9 , Issue 11

Over the past few decades, coordination polymers/metal organic frameworks (CPs/MOFs) have drawn a great deal of attention for diverse applications due to their advantages of intrinsically tunable chemical structure, flexible architecture, high pore volume, high surface area, multifunctional properties, etc. To date, numerous CPs/MOFs have been developed and employed for the treatment and control of gaseous pollutants, such as volatile organic compounds (VOCs), through capture, sorptive removal, and catalytic degradation. Nevertheless, there are also some key drawbacks and challenges for the practical application of these systems (e.g., poor selectivity, high energy (and fiscal) cost, high synthesis cost, low capacity, and difficulties in regeneration and recycling). In this review, recent developments in CPs/MOFs research are described with their associated mechanisms for capture, sorptive removal, and catalytic degradation of VOCs. To this end, we discuss the key variables and challenges for afforded abatement of VOCs through CPs/MOFs technologies. Hopefully, this review will help the scientific community set future directions for the advancement of CPs/MOFs techniques for the effective management of diverse environmental issues.


menu
Abstract
Full text
Outline
About this article

Coordination polymers: Challenges and future scenarios for capture and degradation of volatile organic compounds

Show Author's information Kowsalya Vellingiri1Pawan Kumar2Ki-Hyun Kim1( )
Department of Civil and Environmental EngineeringHanyang University222 Wangsimni-RoSeoul04763Republic of Korea
Department of Nano Sciences and MaterialsCentral University of JammuJammu181143India

Abstract

Over the past few decades, coordination polymers/metal organic frameworks (CPs/MOFs) have drawn a great deal of attention for diverse applications due to their advantages of intrinsically tunable chemical structure, flexible architecture, high pore volume, high surface area, multifunctional properties, etc. To date, numerous CPs/MOFs have been developed and employed for the treatment and control of gaseous pollutants, such as volatile organic compounds (VOCs), through capture, sorptive removal, and catalytic degradation. Nevertheless, there are also some key drawbacks and challenges for the practical application of these systems (e.g., poor selectivity, high energy (and fiscal) cost, high synthesis cost, low capacity, and difficulties in regeneration and recycling). In this review, recent developments in CPs/MOFs research are described with their associated mechanisms for capture, sorptive removal, and catalytic degradation of VOCs. To this end, we discuss the key variables and challenges for afforded abatement of VOCs through CPs/MOFs technologies. Hopefully, this review will help the scientific community set future directions for the advancement of CPs/MOFs techniques for the effective management of diverse environmental issues.

Keywords: coordination polymers/metal organic frameworks (CPs/MOFs), volatile organic compounds, sorptive removal, catalytic degradation

References(142)

1

Guenther, A.; Hewitt, C. N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; McKay, W. A. et al. A global model of natural volatile organic compound emissions. J. Geophys. Res.: Atmos. 1995, 100, 8873–8892.

2

Sahu, L. K. Volatile organic compounds and their measurements in the troposphere. Curr. Sci. 2012, 102, 1645–1649.

3

Goldstein, A. H.; Galbally, I. E. Known and unexplored organic constituents in the earth's atmosphere. Environ. Sci. Technol. 2007, 41, 1514–1521.

4

Guenther, A. Atmospheric chemistry: Are plant emissions green? Nature 2008, 452, 701–702.

5

Hester, R. E.; Harrison, R. M.; Derwent, R. G. Sources, distributions, and fates of VOCs in the atmosphere. In Volatile Organic Compounds in the Atmosphere; Hester, R. E., Ed.; Springer Verlag: Berlin, 1995; pp 1–16.

6

Atkinson, R.; Arey, J. Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103, 4605–4638.

7

Mølhave, L.; Clausen, G.; Berglund, B.; De Ceaurriz, J.; Kettrup, A.; Lindvall, T.; Maroni, M.; Pickering, A. C.; Risse, U.; Rothweiler, H. et al. Total volatile organic compounds (TVOC) in indoor air quality investigations. Indoor Air 1997, 7, 225–240.

8

Calvert, J. G.; Atkinson, R.; Becker, K. H.; Kamens, R. M.; Seinfeld, J. H.; Wallington, T. J.; Yarwood, G. The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons; Oxford University Press: New York, 2002.

9

Lurmann, F. W.; Main, H. H.; Knapp, K. T.; Stockburger, L.; Rasmussen, R. A.; Fung, K. Analysis of the Ambient VOC Data Collected in the Southern California Air Quality Study; Sonoma Technology, Inc.: Santa Rosa, CA, 1992.

10

Mølhave, L.; Bach, B.; Pedersen, O. F. Human reactions to low concentrations of volatile organic compounds. Environ. Int. 1986, 12, 167–175.

11

Ashley, D. L.; Bonin, M. A.; Cardinali, F. L.; McCraw, J. M.; Wooten, J. V. Blood concentrations of volatile organic compounds in a nonoccupationally exposed US population and in groups with suspected exposure. Clin. Chem. 1994, 40, 1401–1404.

12

Phillips, M.; Gleeson, K.; Hughes, J. M. B.; Greenberg, J.; Cataneo, R. N.; Baker, L.; McVay, W. P. Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study. J. Lancet 1999, 353, 1930–1933.

13

Brown, H. S.; Bishop, D. R.; Rowan, C. A. The role of skin absorption as a route of exposure for volatile organic compounds (VOCs) in drinking water. Am. J. Public Health 1984, 74, 479–484.

14

Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 2008, 37, 191–214.

15

Asami, K.; Fujita, T.; Kusakabe, K. -I.; Nishiyama, Y.; Ohtsuka, Y. Conversion of methane with carbon dioxide into C2 hydrocarbons over metal oxides. Appl. Catal. A: Gen. 1995, 126, 245–255.

16

Ramis, G.; Busca, G.; Lorenzelli, V. Low-temperature CO2 adsorption on metal oxides: Spectroscopic characterization of some weakly adsorbed species. Mater. Chem. Phys. 1991, 29, 425–435.

17

Schlatter, J. C.; Oyama, S. T.; Metcalfe, J. E., Ⅲ; Lambert, J. M., Jr. Catalytic behavior of selected transition metal carbides, nitrides, and borides in the hydrodenitrogenation of quinoline. Ind. Eng. Chem. Res. 1988, 27, 1648–1653.

18

Yang, P. D.; Zhao, D. Y.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 1998, 396, 152–155.

19

Sircar, S.; Golden, T. C.; Rao, M. B. Activated carbon for gas separation and storage. Carbon 1996, 34, 1–12.

20

Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem., Int. Ed. 2004, 43, 2334–2375.

21

Batten, S. R.; Champness, N. R.; Chen, X. -M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O'Keeffe, M.; Suh, M. P.; Reedijk, J. Coordination polymers, metal-organic frameworks and the need for terminology guidelines. CrystEngComm 2012, 14, 3001–3004.

22

Bureekaew, S.; Shimomura, S.; Kitagawa, S. Chemistry and application of flexible porous coordination polymers. Sci. Technol. Adv. Mater. 2008, 9, 014108.

23

Férey, G.; Serre, C.; Devic, T.; Maurin, G.; Jobic, H.; Llewellyn, P. L.; De Weireld, G.; Vimont, A.; Daturi, M.; Chang, J. -S. Why hybrid porous solids capture greenhouse gases? Chem. Soc. Rev. 2011, 40, 550–562.

24

Khan, N. A.; Hasan, Z.; Jhung, S. H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. J. Hazard. Mater. 2013, 244–245, 444–456.

25

Robson, R. A net-based approach to coordination polymers. J. Chem. Soc., Dalton Trans. 2000, 3735–3744.

26

Kim, J.; Chen, B. L.; Reineke, T. M.; Li, H. L.; Eddaoudi, M.; Moler, D. B.; O'Keeffe, M.; Yaghi, O. M. Assembly of metal-organic frameworks from large organic and inorganic secondary building units: New examples and simplifying principles for complex structures. J. Am. Chem. Soc. 2001, 123, 8239–8247.

27

Eddaoudi, M.; Moler, D. B.; Li, H. L.; Chen, B. L.; Reineke, T. M.; O'keeffe, M.; Yaghi, O. M. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 2001, 34, 319–330.

28

Chae, H. K.; Eddaoudi, M.; Kim, J.; Hauck, S. I.; Hartwig, J. F.; O'Keeffe, M.; Yaghi, O. M. Tertiary building units: Synthesis, structure, and porosity of a metal-organic dendrimer framework (MODF-1). J. Am. Chem. Soc. 2001, 123, 11482–11483.

29

Basdogan, Y.; Keskin, S. Simulation and modelling of MOFs for hydrogen storage. CrystEngComm 2015, 17, 261–275.

30

Cirera, J.; Babin, V.; Paesani, F. Theoretical modeling of spin crossover in metal-organic frameworks: [Fe(pz)2Pt(CN)4] as a case study. Inorg. Chem. 2014, 53, 11020–11028.

31

Rudenko, A. N.; Bendt, S.; Keil, F. J. Multiscale modeling of water in Mg-MOF-74: From electronic structure calculations to adsorption isotherms. J. Phys. Chem. C 2014, 118, 16218–16227.

32

Van de Voorde, B.; Bueken, B.; Denayer, J.; De Vos, D. Adsorptive separation on metal-organic frameworks in the liquid phase. Chem. Soc. Rev. 2014, 43, 5766–5788.

33

DeCoste, J. B.; Peterson, G. W. Metal-organic frameworks for air purification of toxic chemicals. Chem. Rev. 2014, 114, 5695–5727.

34

Zhou, H. C.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418.

35

Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Metal-organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chem. Soc. Rev. 2015, 44, 1922–1947.

36

Dhakshinamoorthy, A.; Garcia, H. Metal-organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chem. Soc. Rev. 2014, 43, 5750–5765.

37

Huang, G.; Chen, Y. Z.; Jiang, H. L. Metal-organic frameworks for catalysis. Acta Chim. Sinica 2016, 74, 113–129.

38

Liu, J. W.; Chen, L. F.; Cui, H.; Zhang, J. Y.; Zhang, L.; Su, C. Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061.

39

Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd nanocubes@ ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem. 2016, 128, 3749–3753.

40

Heinke, L.; Tu, M.; Wannapaiboon, S.; Fischer, R. A.; Wöll, C. Surface-mounted metal-organic frameworks for applications in sensing and separation. Microporous Mesoporous Mater. 2015, 216, 200–215.

41

Qin, W. W.; Silvestre, M. E.; Kirschhöfer, F.; Brenner-Weiss, G.; Franzreb, M. Insights into chromatographic separation using core–shell metal-organic frameworks: Size exclusion and polarity effects. J. Chromatogr. A 2015, 1411, 77–83.

42

Mellouki, A.; Wallington, T. J.; Chen, J. Atmospheric chemistry of oxygenated volatile organic compounds: Impacts on air quality and climate. Chem. Rev. 2015, 115, 3984–4014.

43

Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.

44

Li, J. -R.; Sculley, J.; Zhou, H. -C. Metal–organic frameworks for separations. Chem. Rev. 2011, 112, 869-932.

45

Bradshaw, D.; El-Hankari, S.; Lupica-Spagnolo, L. Supramolecular templating of hierarchically porous metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 5431–5443.

46

Miras, H. N.; Vilà-Nadal, L.; Cronin, L. Polyoxometalate based open-frameworks (POM-OFs). Chem. Soc. Rev. 2014, 43, 5679–5699.

47

Zhang, Z. J.; Zaworotko, M. J. Template-directed synthesis of metal-organic materials. Chem. Soc. Rev. 2014, 43, 5444– 5455.

48

Zou, T. T.; Lum, C. T.; Lok, C. -N.; Zhang, J. -J.; Che, C. -M. Chemical biology of anticancer gold (Ⅲ) and gold (Ⅰ) complexes. Chem. Soc. Rev. 2015, 44, 8786–8801.

49

Wang, D.; Astruc, D. The golden age of transfer hydrogenation. Chem. Rev. 2015, 115, 6621–6686.

50

Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.; Verpoort, F. Metal-organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 2015, 44, 6804–6849.

51

Du, M.; Li, C. -P.; Liu, C. -S.; Fang, S. -M. Design and construction of coordination polymers with mixed-ligand synthetic strategy. Coord. Chem. Rev. 2013, 257, 1282–1305.

52

Wu, H. H.; Gong, Q. H.; Olson, D. H.; Li, J. Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. Chem. Rev. 2012, 112, 836–868.

53

Zhang, S. -Y.; Shi, W.; Cheng, P.; Zaworotko, M. J. A mixed-crystal lanthanide zeolite-like metal-organic framework as a fluorescent indicator for Lysophosphatidic acid, a cancer biomarker. J. Am. Chem. Soc. 2015, 137, 12203–12206.

54

Keller, J. U.; Staudt, R. Gas Adsorption Equilibria: Experimental Methods and Adsorptive Isotherms; Springer: USA, 2005.

55

Monneyron, P.; Manero, M. -H.; Foussard, J. -N. Measurement and modeling of single- and multi-component adsorption equilibria of VOC on high-silica zeolites. Environ. Sci. Technol. 2003, 37, 2410–2414.

56

Ryu, Y. -K.; Chang, J. -W.; Jung, S. -Y.; Lee, C. -H. Adsorption isotherms of toluene and gasoline vapors on DAY zeolite. J. Chem. Eng. Data 2002, 47, 363–366.

57

Hasan, Z.; Tong, M. M.; Jung, B. K.; Ahmed, I.; Zhong, C. L.; Jhung, S. H. Adsorption of pyridine over amino-functionalized metal-organic frameworks: Attraction via hydrogen bonding versus base–base repulsion. J. Phys. Chem. C 2014, 118, 21049–21056.

58

Bellat, J. -P.; Simonot-Grange, M. -H.; Jullian, S. Adsorption of gaseous p-xylene and m-xylene on NaY, KY, and BaY zeolites: Part 1. Adsorption equilibria of pure xylenes. Zeolites 1995, 15, 124–130.

59

Denayer, J. F. M.; Baron, G. V. Adsorption of normal and branched paraffins in faujasite zeolites NaY, HY, Pt/NaY and USY. Adsorption 1997, 3, 251–265.

60

Hufton, J. R.; Ruthven, D. M.; Danner, R. P. Adsorption and diffusion of hydrocarbons in silicalite at very low concentration: Effect of defect sites. Microporous Mater. 1995, 5, 39–52.

61

Gu, Z. -Y.; Jiang, D. -Q.; Wang, H. -F.; Cui, X. -Y.; Yan, X. -P. Adsorption and separation of xylene isomers and ethylbenzene on two Zn–terephthalate metal–organic frameworks. J. Phys. Chem. C 2010, 114, 311–316.

62

Zhao, X. S.; Lu, G. Q.; Hu, X. Organophilicity of MCM-41 adsorbents studied by adsorption and temperature-programmed desorption. Colloids Surf. A 2001, 179, 261–269.

63

Serrano, D. P.; Calleja, G.; Botas, J. A.; Gutierrez, F. J. Adsorption and hydrophobic properties of mesostructured MCM-41 and SBA-15 materials for volatile organic compound removal. Ind. Eng. Chem. Res. 2004, 43, 7010–7018.

64

Bathen, D.; Schmidt-Traub, H.; Simon, M. Gas adsorption isotherm for dealuminated zeolites. Ind. Eng. Chem. Res. 1997, 36, 3993–3994.

65

El Brihi, T.; Jaubert, J. -N.; Barth, D.; Perrin, L. Determining volatile organic compounds' adsorption isotherms on dealuminated Y zeolite and correlation with different models. J. Chem. Eng. Data 2002, 47, 1553–1557.

66

Wang, C. -M.; Chang, K. -S.; Chung, T. -W.; Wu, H. Adsorption equilibria of aromatic compounds on activated carbon, silica gel, and 13X zeolite. J. Chem. Eng. Data 2004, 49, 527–531.

67

Shim, W. G.; Lee, J. W.; Moon, H. Adsorption equilibrium and column dynamics of VOCs on MCM-48 depending on pelletizing pressure. Microporous Mesoporous Mater. 2006, 88, 112–125.

68

Chowdhury, P.; Bikkina, C.; Gumma, S. Gas adsorption properties of the chromium-based metal organic framework MIL-101. J. Phys. Chem. C 2009, 113, 6616–6621.

69

Ma, F. -J.; Liu, S. -X.; Liang, D. -D.; Ren, G. -J.; Wei, F.; Chen, Y. -G.; Su, Z. -M. Adsorption of volatile organic compounds in porous metal-organic frameworks functionalized by polyoxometalates. J. Solid State Chem. 2011, 184, 3034– 3039.

70

Huang, C. -Y.; Song, M.; Gu, Z. -Y.; Wang, H. -F.; Yan, X. -P. Probing the adsorption characteristic of metal-organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance. Environ. Sci. Technol. 2011, 45, 4490–4496.

71

Trung, T. K.; Ramsahye, N. A.; Trens, P.; Tanchoux, N.; Serre, C.; Fajula, F.; Férey, G. Adsorption of C5-C9 hydrocarbons in microporous MOFs MIL-100(Cr) and MIL-101(Cr): A manometric study. Microporous Mesoporous Mater. 2010, 134, 134–140.

72

Dutour, S.; Nokerman, J.; Limborg-Noetinger, S.; Frère, M. Simultaneous determination of mass and calorimetric adsorption data of volatile organic compounds on microporous media in the low relative pressure range. Meas. Sci. Technol. 2004, 15, 185–194.

73

Guillemot, M.; Mijoin, J.; Mignard, S.; Magnoux, P. Adsorption of tetrachloroethylene on cationic X and Y zeolites: Influence of cation nature and of water vapor. Ind. Eng. Chem. Res. 2007, 46, 4614–4620.

74

Yang, K.; Sun, Q.; Xue, F.; Lin, D. H. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: Influence of molecular size and shape. J. Hazard. Mater. 2011, 195, 124–131.

75

Ahmed, I.; Hasan, Z.; Khan, N. A.; Jhung, S. H. Adsorptive denitrogenation of model fuels with porous metal-organic frameworks (MOFs): Effect of acidity and basicity of MOFs. Appl. Catal. B: Environ. 2013, 129, 123–129.

76

Ahmed, I.; Jhung, S. H. Adsorptive denitrogenation of model fuel with CuCl-loaded metal-organic frameworks (MOFs). Chem. Eng. J. 2014, 251, 35–42.

77

Lamia, N.; Jorge, M.; Granato, M. A.; Paz, F. A. A.; Chevreau, H.; Rodrigues, A. E. Adsorption of propane, propylene and isobutane on a metal-organic framework: Molecular simulation and experiment. Chem. Eng. Sci. 2009, 64, 3246–3259.

78

Gücüyener, C.; van den Bergh, J.; Gascon, J.; Kapteijn, F. Ethane/ethene separation turned on its head: Selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. J. Am. Chem. Soc. 2010, 132, 17704–17706.

79

Jhung, S. H.; Lee, J. H.; Yoon, J. W.; Serre, C.; Férey, G.; Chang, J. S. Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv. Mater. 2007, 19, 121–124.

80

Trens, P.; Belarbi, H.; Shepherd, C.; Gonzalez, P.; Ramsahye, N. A.; Lee, U. -H.; Seo, Y. -K.; Chang, J. -S. Coadsorption of n-hexane and benzene vapors onto the chromium terephthalate-based porous material MIL-101(Cr): An experimental and computational study. J. Phys. Chem. C 2012, 116, 25824– 25831.

81

Trens, P.; Belarbi, H.; Shepherd, C.; Gonzalez, P.; Ramsahye, N. A.; Lee, U. -H.; Seo, Y. -K.; Chang, J. -S. Adsorption and separation of xylene isomers vapors onto the chromium terephthalate-based porous material MIL-101(Cr): An experimental and computational study. Microporous Mesoporous Mater. 2014, 183, 17–22.

82

Yang, K.; Xue, F.; Sun, Q.; Yue, R. L.; Lin, D. H. Adsorption of volatile organic compounds by metal-organic frameworks MOF-177. J. Environ. Chem. Eng. 2013, 1, 713–718.

83

Hartmann, M.; Kunz, S.; Himsl, D.; Tangermann, O.; Ernst, S.; Wagener, A. Adsorptive separation of isobutene and isobutane on Cu3(BTC)2. Langmuir 2008, 24, 8634–8642.

84

Zhao, Z. X.; Li, X. M.; Huang, S. S.; Xia, Q. B.; Li, Z. Adsorption and diffusion of benzene on chromium-based metal organic framework MIL-101 synthesized by microwave irradiation. Ind. Eng. Chem. Res. 2011, 50, 2254–2261.

85

Zhao, Z. X.; Li, X. M.; Li, Z. Adsorption equilibrium and kinetics of p-xylene on chromium-based metal organic framework MIL-101. Chem. Eng. J. 2011, 173, 150–157.

86

Hong, D. Y.; Hwang, Y. K.; Serre, C.; Férey, G.; Chang, J. S. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis. Adv. Funct. Mater. 2009, 19, 1537– 1552.

87

Qin, W. P.; Cao, W. X.; Liu, H. L.; Li, Z.; Li, Y. W. Metal-organic framework MIL-101 doped with palladium for toluene adsorption and hydrogen storage. RSC Adv. 2014, 4, 2414–2420.

88

Sun, X. J.; Xia, Q. B.; Zhao, Z. X.; Li, Y. W.; Li, Z. Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane. Chem. Eng. J. 2014, 239, 226–232.

89

Ferreira, A. F. P.; Santos, J. C.; Plaza, M. G.; Lamia, N.; Loureiro, J. M.; Rodrigues, A. E. Suitability of Cu-BTC extrudates for propane–propylene separation by adsorption processes. Chem. Eng. J. 2011, 167, 1–12.

90

Xu, F.; Xian, S. K.; Xia, Q. B.; Li, Y. W.; Li, Z. Effect of textural properties on the adsorption and desorption of toluene on the metal-organic frameworks HKUST-1 and MIL-101. Adsorpt. Sci. Technol. 2013, 31, 325–340.

91

Zhao, Z. X.; Wang, S.; Yang, Y.; Li, X. M.; Li, J.; Li, Z. Competitive adsorption and selectivity of benzene and water vapor on the microporous metal organic frameworks (HKUST-1). Chem. Eng. J. 2015, 259, 79–89.

92

Shim, W. -G.; Hwang, K. -J.; Chung, J. -T.; Baek, Y. -S.; Yoo, S. -J.; Kim, S. -C.; Moon, H.; Lee, J. -W. Adsorption and thermodesorption characteristics of benzene in nanoporous metal organic framework MOF-5. Adv. Powder Technol. 2012, 23, 615–619.

93

Shi, J.; Zhao, Z. X.; Xia, Q. B.; Li, Y. W.; Li, Z. Adsorption and diffusion of ethyl acetate on the chromium-based metal-organic framework MIL-101. J. Chem. Eng. Data 2011, 56, 3419–3425.

94

Xian, S. K.; Li, X. L.; Xu, F.; Xia, Q. B.; Li, Z. Adsorption isotherms, kinetics, and desorption of 1, 2-dichloroethane on chromium-based metal organic framework MIL-101. Sep. Sci. Technol. 2013, 48, 1479–1489.

95

Lee, J. S.; Jhung, S. H. Vapor-phase adsorption of alkylaromatics on aluminum-trimesate MIL-96: An unusual increase of adsorption capacity with temperature. Microporous Mesoporous Mater. 2010, 129, 274–277.

96

Britt, D.; Tranchemontagne, D.; Yaghi, O. M. Metal-organic frameworks with high capacity and selectivity for harmful gases. Proc. Natl. Acad. Sci. USA 2008, 105, 11623–11627.

97

Alaerts, L.; Kirschhock, C. E. A.; Maes, M.; van der Veen, M. A.; Finsy, V.; Depla, A.; Martens, J. A.; Baron, G. V.; Jacobs, P. A.; Denayer, J. F. M. et al. Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium (Ⅳ) terephthalate MIL-47. Angew. Chem., Int. Ed. 2007, 46, 4293–4297.

98

Forster, P. M.; Burbank, A. R.; Livage, C.; Férey, G.; Cheetham, A. K. The role of temperature in the synthesis of hybrid inorganic–organic materials: The example of cobalt succinates. Chem. Commun. 2004, 368–369.

99

Forster, P. M.; Stock, N.; Cheetham, A. K. A high-throughput investigation of the role of pH, temperature, concentration, and time on the synthesis of hybrid inorganic– organic materials. Angew. Chem., Int. Ed. 2005, 44, 7608– 7611.

100

Serre, C.; Groves, J. A.; Lightfoot, P.; Slawin, A. M.; Wright, P. A.; Stock, N.; Bein, T.; Haouas, M.; Taulelle, F.; Férey, G. Synthesis, structure and properties of related microporous N, N'-piperazinebismethylenephosphonates of aluminum and titanium. Chem. Mater. 2006, 18, 1451–1457.

101

Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.

102

Yilmaz, B.; Trukhan, N.; Müller, U. Industrial outlook on zeolites and metal organic frameworks. Chinese J. Catal. 2012, 33, 3–10.

103

Silva, P.; Vilela, S. M. F.; Tomé, J. P. C.; Paz, F. A. A. Multifunctional metal-organic frameworks: From academia to industrial applications. Chem. Soc. Rev. 2015, 44, 6774– 6803.

104

Chen, N.; Yang, R. T. Ab initio molecular orbital study of adsorption of oxygen, nitrogen, and ethylene on silver-zeolite and silver halides. Ind. Eng. Chem. Res. 1996, 35, 4020–4027.

105

Vellingiri, K.; Szulejko, J. E.; Kumar, P.; Kwon, E. E.; Kim, K. -H.; Deep, A.; Boukhvalov, D. W.; Brown, R. J. C. Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions. Sci. Rep. 2016, 6, 27813.

106

Thomas, K. M. Hydrogen adsorption and storage on porous materials. Catal. Today 2007, 120, 389–398.

107

Zhao, Y. X.; Seredych, M.; Zhong, Q.; Bandosz, T. J. Superior performance of copper based MOF and aminated graphite oxide composites as CO2 adsorbents at room temperature. ACS Appl. Mater. Interfaces 2013, 5, 4951–4959.

108

Liu, B. J.; Yang, F.; Zou, Y. X.; Peng, Y. Adsorption of phenol and p-nitrophenol from aqueous solutions on metal-organic frameworks: Effect of hydrogen bonding. J. Chem. Eng. Data 2014, 59, 1476–1482.

109

Petit, C.; Bandosz, T. J. Enhanced adsorption of ammonia on metal-organic framework/graphite oxide composites: Analysis of surface interactions. Adv. Funct. Mater. 2010, 20, 111–118.

110

Planas, N.; Dzubak, A. L.; Poloni, R.; Lin, L. -C.; McManus, A.; McDonald, T. M.; Neaton, J. B.; Long, J. R.; Smit, B.; Gagliardi, L. The mechanism of carbon dioxide adsorption in an alkylamine-functionalized metal-organic framework. J. Am. Chem. Soc. 2013, 135, 7402–7405.

111

Zhao, D.; Yuan, D. Q.; Krishna, R.; van Baten, J. M.; Zhou, H. -C. Thermosensitive gating effect and selective gas adsorption in a porous coordination nanocage. Chem. Commun. 2010, 46, 7352–7354.

112

Isvoranu, C.; Wang, B.; Ataman, E.; Schulte, K.; Knudsen, J.; Andersen, J. N.; Bocquet, M. -L.; Schnadt, J. Pyridine adsorption on single-layer iron phthalocyanine on Au(111). J. Phys. Chem. C 2011, 115, 20201–20208.

113

Mollenhauer, D.; Gaston, N.; Voloshina, E.; Paulus, B. Interaction of pyridine derivatives with a gold (111) surface as a model for adsorption to large nanoparticles. J. Phys. Chem. C 2013, 117, 4470–4479.

114

Ng, W. K. H.; Liu, J. W.; Liu, Z. -F. Reaction barriers and cooperative effects for the adsorption of pyridine on Si(100). J. Phys. Chem. C 2013, 117, 26644–26651.

115

Rosenbach, N., Jr.; Ghoufi, A.; Déroche, I.; Llewellyn, P. L.; Devic, T.; Bourrelly, S.; Serre, C.; Férey, G.; Maurin, G. Adsorption of light hydrocarbons in the flexible MIL-53(Cr) and rigid MIL-47(Ⅴ) metal-organic frameworks: A combination of molecular simulations and microcalorimetry/gravimetry measurements. Phys. Chem. Chem. Phys. 2010, 12, 6428–6437.

116

Serre, C.; Mellot-Draznieks, C.; Surblé, S.; Audebrand, N.; Filinchuk, Y.; Férey, G. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 2007, 315, 1828–1831.

117

Llewellyn, P. L.; Horcajada, P.; Maurin, G.; Devic, T.; Rosenbach, N.; Bourrelly, S.; Serre, C.; Vincent, D.; Loera-Serna, S.; Filinchuk, Y. et al. Complex adsorption of short linear alkanes in the flexible metal-organic-framework MIL-53(Fe). J. Am. Chem. Soc. 2009, 131, 13002–13008.

118

Coudert, F. -X.; Mellot-Draznieks, C.; Fuchs, A. H.; Boutin, A. Double structural transition in hybrid material MIL-53 upon hydrocarbon adsorption: The thermodynamics behind the scenes. J. Am. Chem. Soc. 2009, 131, 3442–3443.

119

Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Hydrocarbon separations in a metal-organic framework with open iron(Ⅱ) coordination sites. Science 2012, 335, 1606–1610.

120

Raghavan, K. V.; Reddy, B. M. Industrial Catalysis and Separations: Innovations for Process Intensification; Apple Academic Press: Waretown, NJ, 2014.

DOI
121

Seo, J.; Matsuda, R.; Sakamoto, H.; Bonneau, C.; Kitagawa, S. A pillared-layer coordination polymer with a rotatable pillar acting as a molecular gate for guest molecules. J. Am. Chem. Soc. 2009, 131, 12792–12800.

122

Armstrong, D. W.; He, L. F.; Liu, Y. -S. Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Anal. Chem. 1999, 71, 3873–3876.

123

Berthod, A.; Zhou, E. Y.; Le, K.; Armstrong, D. W. Determination and use of Rohrschneider–McReynolds constants for chiral stationary phases used in capillary gas chromatography. Anal. Chem. 1995, 67, 849–857.

124

Sun, H. Q.; Wang, S. B. Catalytic oxidation of organic pollutants in aqueous solution using sulfate radicals. Catalysis 2015, 27, 209–247.

125

Kumar, P.; Kim, K. -H.; Kwon, E. E.; Szulejko, J. E. Metal-organic frameworks for the control and management of air quality: Advances and future direction. J. Mater. Chem. A 2016, 4, 345–361.

126

Barea, E.; Montoro, C.; Navarro, J. A. R. Toxic gas removal-metal-organic frameworks for the capture and degradation of toxic gases and vapours. Chem. Soc. Rev. 2014, 43, 5419–5430.

127

Corma, A.; García, H.; Llabrés i Xamena, F. X. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 2010, 110, 4606–4655.

128

Izumi, Y. Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev. 2013, 257, 171–186.

129

Toyao, T.; Miyahara, K.; Fujiwaki, M.; Kim, T. -H.; Dohshi, S.; Horiuchi, Y.; Matsuoka, M. Immobilization of Cu complex into Zr-based MOF with bipyridine units for heterogeneous selective oxidation. J. Phys. Chem. C 2015, 119, 8131–8137.

130

Zaitan, H.; Manero, M. H.; Valdés, H. Application of high silica zeolite ZSM-5 in a hybrid treatment process based on sequential adsorption and ozonation for VOCs elimination. J. Environ. Sci. 2016, 41, 59–68.

131

Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T. -H.; Long, J. R. Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 2012, 112, 724–781.

132

Hu, J.; Yu, H. J.; Dai, W.; Yan, X. Y.; Hu, X.; Huang, H. Enhanced adsorptive removal of hazardous anionic dye "congo red" by a Ni/Cu mixed-component metal-organic porous material. RSC Adv. 2014, 4, 35124–35130.

133

Petit, C.; Levasseur, B.; Mendoza, B.; Bandosz, T. J. Reactive adsorption of acidic gases on MOF/graphite oxide composites. Microporous Mesoporous Mater. 2012, 154, 107–112.

134

Seoane, B.; Téllez, C.; Coronas, J.; Staudt, C. NH2-MIL-53(Al) and NH2-MIL-101(Al) in sulfur-containing copolyimide mixed matrix membranes for gas separation. Sep. Purif. Technol. 2013, 111, 72–81.

135

Kim, H. K.; Yun, W. S.; Kim, M. -B.; Kim, J. Y.; Bae, Y. -S.; Lee, J.; Jeong, N. C. A chemical route to activation of open metal sites in the copper-based metal-organic framework materials HKUST-1 and Cu-MOF-2. J. Am. Chem. Soc. 2015, 137, 10009–10015.

136

Li, H. L.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276– 279.

137

Nelson, A. P.; Farha, O. K.; Mulfort, K. L.; Hupp, J. T. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal–organic framework materials. J. Am. Chem. Soc. 2009, 131, 458–460.

138

Greathouse, J. A.; Allendorf, M. D. The interaction of water with MOF-5 simulated by molecular dynamics. J. Am. Chem. Soc. 2006, 128, 10678–10679.

139

Zhou, X.; Huang, W. Y.; Shi, J.; Zhao, Z. X.; Xia, Q. B.; Li, Y. W.; Wang, H. H.; Li, Z. A novel MOF/graphene oxide composite GrO@MIL-101 with high adsorption capacity for acetone. J. Mater. Chem. A 2014, 2, 4722–4730.

140

Yusuf, K.; Aqel, A.; Alothman, Z. Metal-organic frameworks in chromatography. J. Chromatogr. A 2014, 1348, 1–16.

141

Burtch, N. C.; Jasuja, H.; Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114, 10575–10612.

142

Han, S.; Lah, M. S. Simple and efficient regeneration of MOF-5 and HKUST-1 via acid-base treatment. Cryst. Growth Des. 2015, 15, 5568–5572.

Publication history
Copyright
Acknowledgements

Publication history

Received: 06 July 2016
Revised: 23 July 2016
Accepted: 24 July 2016
Published: 01 September 2016
Issue date: November 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The corresponding author (K. H. K.) acknowledges support from a National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) (No. 2006-0093848) and from the Cooperative Research Program for Agriculture Science & Technology Development (Project title: Study on model development to control odor from hog barn, Project No. PJ010521), Rural Development Administration, Republic of Korea. P. K. also wants to thank the Science and Engineering Research Board (SERB), New Delhi, for funding the Start Research Grant (Young Scientist).

Return