Journal Home > Volume 9 , Issue 11

Contrasting room-temperature hydrogen sensing behaviors have been revealed for Pt-TiO2 and Pt-SnO2 composite nanoceramics. In the case of the Pt-TiO2 nanoceramics, the ultrahigh hydrogen sensitivities are lost abruptly when the oxygen/hydrogen concentration ratio in ambient atmosphere reaches a critical value. However, in the case of the Pt-SnO2 nanoceramics, such a phenomenon does not occur, and the extraordinary room-temperature hydrogen sensing capabilities are observed in the presence of oxygen in air. Our combined experimental and theoretical investigations establish a unified mechanism for both the systems, which is rooted in hydrogen chemisorption on the surface and interstitial lattice sites of SnO2 and TiO2; the difference in stability of the chemisorbed hydrogen on SnO2 and TiO2 is considered responsible for the contrasting hydrogen sensing capabilities. The central findings are helpful in enriching our microscopic understanding of hydrogen interaction with various metal oxide semiconductors (MOSs) at room temperature in varying mixed gaseous concentrations, and they could be instrumental in developing reliable room-temperature hydrogen sensors based on bulk MOSs.


menu
Abstract
Full text
Outline
About this article

Contrasting room-temperature hydrogen sensing capabilities of Pt-SnO2 and Pt-TiO2 composite nanoceramics

Show Author's information Yao Xiong1Wanping Chen1( )Yesheng Li2Ping Cui3Shishang Guo1Wei Chen3Zilong Tang2Zijie Yan4Zhenyu Zhang3( )
School of Physics and TechnologyWuhan UniversityWuhan430072China
School of Materials Science and EngineeringState Key Laboratory of New Ceramics and Fine ProcessingTsinghua UniversityBeijing100084China
International Center for Quantum Design of Functional Materials (ICQD)Hefei Laboratory for Physical Sciences at Microscale (HFNL)and Synergetic Innovation Center of National Quantum Information and Quantum PhysicsUniversity of Science and Technology of ChinaHefei230026China
Department of Chemical and Biomolecular EngineeringClarkson UniversityPotsdamNew York13699USA

Abstract

Contrasting room-temperature hydrogen sensing behaviors have been revealed for Pt-TiO2 and Pt-SnO2 composite nanoceramics. In the case of the Pt-TiO2 nanoceramics, the ultrahigh hydrogen sensitivities are lost abruptly when the oxygen/hydrogen concentration ratio in ambient atmosphere reaches a critical value. However, in the case of the Pt-SnO2 nanoceramics, such a phenomenon does not occur, and the extraordinary room-temperature hydrogen sensing capabilities are observed in the presence of oxygen in air. Our combined experimental and theoretical investigations establish a unified mechanism for both the systems, which is rooted in hydrogen chemisorption on the surface and interstitial lattice sites of SnO2 and TiO2; the difference in stability of the chemisorbed hydrogen on SnO2 and TiO2 is considered responsible for the contrasting hydrogen sensing capabilities. The central findings are helpful in enriching our microscopic understanding of hydrogen interaction with various metal oxide semiconductors (MOSs) at room temperature in varying mixed gaseous concentrations, and they could be instrumental in developing reliable room-temperature hydrogen sensors based on bulk MOSs.

Keywords: sensors, hydrogen, SnO2, nanoceramics, room-temperature

References(32)

1

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

2

Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

Gong, M.; Wang, D. Y.; Chen, C. C.; Hwang, B. J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.

4

Yoon, M.; Yang, S. Y.; Hicke, C.; Wang, E. G.; Geohegan, D.; Zhang, Z. Y. Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage. Phys. Rev. Lett. 2008, 100, 206806.

5

Huang, H.; Bao, S. X.; Chen, Q. L.; Yang, Y. A.; Jiang, Z. Y.; Kuang, Q.; Wu, X. Y.; Xie, Z. X.; Zheng, L. S. Novel hydrogen storage properties of palladium nanocrystals activated by a pentagonal cyclic twinned structure. Nano Res. 2015, 8, 2698–2705.

6

Kong, J; Chapline, M. G.; Dai, H. J. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater. 2001, 13, 1384–1386.

7

Russo, P. A.; Donato, N.; Leonardi, S. G.; Baek, S.; Conte, D. E.; Neri, G.; Pinna, N. Room-temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide. Angew. Chem., Int. Ed. 2012, 51, 11053–11057.

8

Moy, R. Liability and the hydrogen economy. Science 2003, 301, 47.

9

Korotcenkov, G. Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications; Springer: New York, 2013.

DOI
10

Barsan, N.; Weimar, U. Conduction model of metal oxide gas sensors. J. Electroceram. 2001, 7, 143–167.

11

Boon-Brett, L.; Bousek, J.; Black, G.; Moretto, P.; Castello, P.; Hubert, T.; Banach, U. Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications. Int. J. Hydrogen Energy 2010, 35, 373–384.

12

Wang, Y. M.; Du, G. J.; Liu, H.; Liu, D.; Qin, S. B.; Wang, N.; Hu, C. G.; Tao, X. T.; Jiao, J.; Wang, J. Y. et al. Nanostructured sheets of Ti-O nanobelts for gas sensing and antibacterial applications. Adv. Funct. Mater. 2008, 18, 1131–1137.

13

Zou, X. M.; Wang, J. L.; Liu, X. Q.; Wang, C. L; Jiang, Y.; Wang, Y.; Xiao, X. H.; Ho, J. C.; Li, J. C.; Jiang, C. Z. et al. Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors. Nano Lett. 2013, 13, 3287–3292.

14

Cheng, W.; Ju, Y. R.; Payamyar, P.; Primc, D.; Rao, J. Y.; Willa, C.; Koziej, D.; Niederberger, M. Large-area alignment of tungsten oxide nanowires over flat and patterned substrates for room-temperature gas sensing. Angew. Chem., Int. Ed. 2015, 54, 340–344.

15

Varghese, O. K.; Gong, D. W.; Paulose, M.; Grimes, C. A.; Dickey, E. C. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 2003, 18, 156–165.

16

Pavelko, R. G.; Vasiliev, A. A.; Llobet, E.; Vilanova, X.; Barrabé s, N.; Medina, F.; Sevastyanov, V. G. Comparative study of nanocrystalline SnO2 materials for gas sensor application: Thermal stability and catalytic activity. Sensor. Actuat. B: Chem. 2009, 137, 637–643.

17

Bahu, M.; Kumar, K.; Bahu, T. CuO-ZnO semiconductor gas sensor for ammonia at room temperature. J. Electron Devices 2012, 14, 1137–1141.

18

Chen, W. P.; Xiong, Y.; Li, Y. S.; Cui, P.; Guo, S. S.; Chen, W.; Tang, Z. L.; Yan, Z. J.; Zhang, Z. Y. Extraordinary room-temperature hydrogen sensing capabilities of porous bulk Pt-TiO2 nanocomposite ceramics. Int. J. Hydrogen Energy 2016, 41, 3307–3312.

19

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

20

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

21

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

22

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

23

Methfessel, M.; Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621.

24

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

25

Xiong, Y.; Tang, Z. L.; Wang, Y.; Hu, Y. M.; Gu, H. S.; Li, Y. Z.; Chen, W. P. Gas sensing capabilities of TiO2 porous nanoceramics prepared through premature sintering. J. Adv. Ceram. 2015, 4, 152–157.

26

Roland, U.; Salzer, R.; Braunschweig, T.; Roessner, F.; Winkler, H. Investigations on hydrogen spillover: Part 1. —Electrical conductivity studies on titanium dioxide. J. Chem. Soc., Faraday Trans. 1995, 91, 1091–1095.

27

Lin, Y.; Ding, F.; Yakobson, B. I. Hydrogen storage by spillover on graphene as a phase nucleation process. Phys. Rev. B 2008, 78, 041402(R).

28

Bouzoubaa, A.; Markovits, A.; Calatayud, M.; Minot, C. Comparison of the reduction of metal oxide surfaces: TiO2anatase, TiO2-rutile and SnO2-rutile. Surf. Sci. 2005, 583, 107–117.

29

Singh, A. K.; Janotti, A.; Scheffler, M.; Van de Walle, C. G. Sources of electrical conductivity in SnO2. Phys. Rev. Lett. 2008, 101, 055502.

30

Aschauer, U.; Selloni, A. Hydrogen interaction with the anatase TiO2(101) surface. Phys. Chem. Chem. Phys. 2012, 14, 16595–16602.

31

Bates, J. B.; Wang, J. C.; Perkins, R. A. Mechanisms for hydrogen diffusion in TiO2. Phys. Rev. B 1979, 19, 4130–4139.

32

Chen, W. P.; He, K. F.; Wang, Y.; Chan, H. L. W.; Yan, Z. J. Highly mobile and reactive state of hydrogen in metal oxide semiconductors at room temperature. Sci. Rep. 2013, 3, 3149.

Publication history
Copyright
Acknowledgements

Publication history

Received: 06 June 2016
Revised: 18 July 2016
Accepted: 23 July 2016
Published: 30 August 2016
Issue date: November 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61434002, J1210061, 11204286, and 11504357), the National High-tech R & D Program of China (No. 2013AA031903), and the National Basic Research Program of China (No. 2014CB921103).

Return