Journal Home > Volume 9 , Issue 11

Metal-free organic radicals are fascinating materials owing to their unique properties. Having a stable magnetic moment coupled to light elements makes these materials central to develop a large variety of applications. We investigated the magnetic spinterface coupling between the surface of a single rutile TiO2(110) crystal and a pyrene-based nitronyl nitroxide radical, using a combination of thickness-dependent X-ray photoelectron spectroscopy and ab initio calculations. The radicals were physisorbed, and their magnetic character was preserved on the (almost) ideal surface. The situation changed completely when the molecules interacted with a surface defect site upon adsorption. In this case, the reactivity of the defect site led to the quenching of the molecular magnetic moment. Our work elucidates the crucial role played by the surface defects and demonstrates that photoemission spectroscopy combined with density functional theory calculations can be used to shed light on the mechanisms governing complex interfaces, such as those between magnetic molecules and metal oxides.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Unraveling the mark of surface defects on a spinterface: The nitronyl nitroxide/TiO2(110) interface

Show Author's information Reza Kakavandi1,§Arrigo Calzolari2,§Yulia B. Borozdina3Prince Ravat3Thomas Chassé1Martin Baumgarten3M. Benedetta Casu1( )
Institute of Physical and Theoretical ChemistryUniversity of TübingenAuf der Morgenstelle 1872076Tübingen, Germany
CNR-NANO Istituto NanoscienzeCentro S341125Modena, Italy
Max Planck Institute for Polymer ResearchAckermannweg 1055128Mainz, Germany

§These authors contributed equally to this work.

Abstract

Metal-free organic radicals are fascinating materials owing to their unique properties. Having a stable magnetic moment coupled to light elements makes these materials central to develop a large variety of applications. We investigated the magnetic spinterface coupling between the surface of a single rutile TiO2(110) crystal and a pyrene-based nitronyl nitroxide radical, using a combination of thickness-dependent X-ray photoelectron spectroscopy and ab initio calculations. The radicals were physisorbed, and their magnetic character was preserved on the (almost) ideal surface. The situation changed completely when the molecules interacted with a surface defect site upon adsorption. In this case, the reactivity of the defect site led to the quenching of the molecular magnetic moment. Our work elucidates the crucial role played by the surface defects and demonstrates that photoemission spectroscopy combined with density functional theory calculations can be used to shed light on the mechanisms governing complex interfaces, such as those between magnetic molecules and metal oxides.

Keywords: organic spinterface, photoemission spectroscopy, density functional theory calculations

References(73)

1

Getzlaff, M. Fundamentals of Magnetism; Springer-Verlag: Berlin, Heidelberg, 2008.

2

Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets; Oxford University Press: New York, 2006.

DOI
3
Nobelprize. org. The Nobel Prize in Physics 2007 [Online]. http://www.nobelprize.org/nobel_prizes/physics/laureates/2007/(accessed Jul 14, 2016).
4

Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488–1495.

5

Sanvito, S. Molecular spintronics. Chem. Soc. Rev. 2011, 40, 3336–3355.

6

Miller, J. S. Magnetically ordered molecule-based materials. Chem. Soc. Rev. 2011, 40, 3266–3296.

7

Epifanov, G. I. Solid State Physics; Mir Publisher: Moscow, 1979.

8

Caneschi, A.; Ferraro, F.; Gatteschi, D.; le Lirzin, A.; Novak, M. A.; Rentschler, E.; Sessoli, R. Ferromagnetic order in the sulfur-containing nitronyl nitroxide radical, 2-(4-thiomethyl)phenyl-4, 4, 5, 5-tetramethylimidazoline-l-ox yl-3-oxide, NIT(SMe)Ph. Adv. Mater. 1995, 7, 476–478.

9

Tamura, M.; Nakazawa, Y.; Shiomi, D.; Nozawa, K.; Hosokoshi, Y.; Ishikawa, M.; Takahashi, M.; Kinoshita, M. Bulk ferromagnetism in the β-phase crystal of the p-nitrophenyl nitronyl nitroxide radical. Chem. Phys. Lett. 1991, 186, 401–404.

10

Zhang, Y. -H.; Kahle, S.; Herden, T.; Stroh, C.; Mayor, M.; Schlickum, U.; Ternes, M.; Wahl, P.; Kern, K. Temperature and magnetic field dependence of a Kondo system in the weak coupling regime. Nat. Commun. 2013, 4, 2110.

11

Liu, J.; Isshiki, H.; Katoh, K.; Morita, T.; Breedlove, B. K.; Yamashita, M.; Komeda, T. First observation of a kondo resonance for a stable neutral pure organic radical, 1, 3, 5-triphenyl-6-oxoverdazyl, adsorbed on the Au(111) surface. J. Am. Chem. Soc. 2013, 135, 651–658.

12

Frisenda, R.; Gaudenzi, R.; Franco, C.; Mas-Torrent, M.; Rovira, C.; Veciana, J.; Alcon, I.; Bromley, S. T.; Burzurí, E.; van der Zant, H. S. J. Kondo effect in a neutral and stable all organic radical single molecule break junction. Nano Lett. 2015, 15, 3109–3114.

13

Hicks, R. G. Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds; Wiley: Chichester, 2010.

DOI
14

Rajca, A.; Shiraishi, K.; Pink, M.; Rajca, S. Triplet (S = 1) ground state aminyl diradical. J. Am. Chem. Soc. 2007, 129, 7232–7233.

15

Rajca, A.; Olankitwanit, A.; Wang, Y.; Boratynski, P. J.; Pink, M.; Rajca, S. High-spin S = 2 ground state aminyl tetraradicals. J. Am. Chem. Soc. 2013, 135, 18205–18215.

16

Ullman, E. F.; Call, L.; Osiecki, J. H. Stable free radicals. Ⅷ. New imino, amidino, and carbamoyl nitroxides. J. Org. Chem. 1970, 35, 3623–3631.

17

Caneschi, A.; Gatteschi, D.; Sessoli, R.; Rey, P. Toward molecular magnets: The metal-radical approach. Acc. Chem. Res. 1989, 22, 392–398.

18

Sun, Z.; Zeng, Z. B.; Wu, J. S. Zethrenes, extended p-quinodimethanes, and periacenes with a singlet biradical ground state. Acc. Chem. Res. 2014, 47, 2582–2591.

19

Ratera, I.; Veciana, J. Playing with organic radicals as building blocks for functional molecular materials. Chem. Soc. Rev. 2012, 41, 303–349.

20

Choi, J.; Lee, H.; Kim, K. -J.; Kim, B.; Kim, S. Chemical doping of epitaxial graphene by organic free radicals. J. Phys. Chem. Lett. 2010, 1, 505–509.

21

Hong, J.; Bekyarova, E.; de Heer, W. A.; Haddon, R. C.; Khizroev, S. Chemically engineered graphene-based 2D organic molecular magnet. ACS Nano 2013, 7, 10011–10022.

22

Ying, Y. M.; Saini, R. K.; Liang, F.; Sadana, A. K.; Billups, W. E. Functionalization of carbon nanotubes by free radicals. Org. Lett. 2003, 5, 1471–1473.

23

Mas-Torrent, M.; Crivillers, N.; Mugnaini, V.; Ratera, I.; Rovira, C.; Veciana, J. Organic radicals on surfaces: Towards molecular spintronics. J. Mater. Chem. 2009, 19, 1691–1695.

24

Grillo, F.; Früchtl, H.; Francis, S. M.; Mugnaini, V.; Oliveros, M.; Veciana, J.; Richardson, N. V. An ordered organic radical adsorbed on a Cu-doped Au(111) surface. Nanoscale 2012, 4, 6718–6721.

25

Holmberg, R. J.; Hutchings, A. -J.; Habib, F.; Korobkov, I.; Scaiano, J. C.; Murugesu, M. Hybrid nanomaterials: Anchoring magnetic molecules on naked gold nanocrystals. Inorg. Chem. 2013, 52, 14411–14418.

26

Domingo, N.; Bellido, E.; Ruiz-Molina, D. Advances on structuring, integration and magnetic characterization of molecular nanomagnets on surfaces and devices. Chem. Soc. Rev. 2012, 41, 258–302.

27

Müllegger, S.; Rashidi, M.; Fattinger, M.; Koch, R. Interactions and self-assembly of stable hydrocarbon radicals on a metal support. J. Phys. Chem. C 2012, 116, 22587–22594.

28

Lee, J.; Lee, E.; Kim, S.; Bang, G. S.; Shultz, D. A.; Schmidt, R. D.; Forbes, M. D. E.; Lee, H. Nitronyl nitroxide radicals as organic memory elements with both n- and p-type properties. Angew. Chem., Int. Ed. 2011, 50, 4414–4418.

29

Simão, C.; Mas-Torrent, M.; Crivillers, N.; Lloveras, V.; Artés, J. M.; Gorostiza, P.; Veciana, J.; Rovira, C. A robust molecular platform for non-volatile memory devices with optical and magnetic responses. Nat. Chem. 2011, 3, 359–364.

30

Tomlinson, E. P.; Hay, M. E.; Boudouris, B. W. Radical polymers and their application to organic electronic devices. Macromolecules 2014, 47, 6145–6158.

31

Huskinson, B.; Marshak, M. P.; Suh, C.; Er, S.; Gerhardt, M. R.; Galvin, C. J.; Chen, X. D.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. A metal-free organic–inorganic aqueous flow battery. Nature 2014, 505, 195–198.

32

Oyaizu, K.; Nishide, H. Radical polymers for organic electronic devices: A radical departure from conjugated polymers? Adv. Mater. 2009, 21, 2339–2344.

33

Crivillers, N.; Mas-Torrent, M.; Rovira, C.; Veciana, J. Charge transport through unpaired spin-containing molecules on surfaces. J. Mater. Chem. 2012, 22, 13883–13890.

34

Sugawara, T.; Komatsu, H.; Suzuki, K. Interplay between magnetism and conductivity derived from spin-polarized donor radicals. Chem. Soc. Rev. 2011, 40, 3105–3118.

35

Davis, R. M.; Sowers, A. L.; DeGraff, W.; Bernardo, M.; Thetford, A.; Krishna, M. C.; Mitchell, J. B. A novel nitroxide is an effective brain redox imaging contrast agent and in vivo radioprotector. Free Radical Biol. Med. 2011, 51, 780–790.

36

Sowers, M. A.; McCombs, J. R.; Wang, Y.; Paletta, J. T.; Morton, S. W.; Dreaden, E. C.; Boska, M. D.; Ottaviani, M. F.; Hammond, P. T.; Rajca, A. et al. Redox-responsive branched-bottlebrush polymers for in vivo MRI and fluorescence imaging. Nat. Commun. 2014, 5, 5460.

37

Rajca, A.; Wang, Y.; Boska, M.; Paletta, J. T.; Olankitwanit, A.; Swanson, M. A.; Mitchell, D. G.; Eaton, S. S.; Eaton, G. R.; Rajca, S. Organic radical contrast agents for magnetic resonance imaging. J. Am. Chem. Soc. 2012, 134, 15724–15727.

38

Kawanaka, Y.; Shimizu, A.; Shinada, T.; Tanaka, R.; Teki, Y. Using stable radicals to protect pentacene derivatives from photodegradation. Angew. Chem., Int. Ed. 2013, 52, 6643–6647.

39

Chernick, E. T.; Casillas, R.; Zirzlmeier, J.; Gardner, D. M.; Gruber, M.; Kropp, H.; Meyer, K.; Wasielewski, M. R.; Guldi, D. M.; Tykwinski, R. R. Pentacene appended to a TEMPO stable free radical: The effect of magnetic exchange coupling on photoexcited pentacene. J. Am. Chem. Soc. 2015, 137, 857–863.

40

Rajca, A. Organic diradicals and polyradicals: From spin coupling to magnetism? Chem. Rev. 1994, 94, 871–893.

41

Blatter, H. M.; Lukaszewski, H. A new stable free radical. Tetrahedron Lett. 1968, 9, 2701–2705.

42

Ciccullo, F.; Gallagher, N. M.; Geladari, O.; Chassé, T.; Rajca, A.; Casu, M. B. A derivative of the blatter radical as a potential metal-free magnet for stable thin films and interfaces. ACS Appl. Mater. Interfaces 2016, 8, 1805–1812.

43

Lüth, H. Solid Surfaces, Interfaces and Thin Films; Springer: Berlin, Heidelberg, 2010.

DOI
44

Sanvito, S. Molecular spintronics: The rise of spinterface science. Nat. Phys. 2010, 6, 562–564.

45

Barraud, C.; Seneor, P.; Mattana, R.; Fusil, S.; Bouzehouane, K.; Deranlot, C.; Graziosi, P.; Hueso, L.; Bergenti, I.; Dediu, V. et al. Unravelling the role of the interface for spin injection into organic semiconductors. Nat. Phys. 2010, 6, 615–620.

46

Djeghloul, F.; Ibrahim, F.; Cantoni, M.; Bowen, M.; Joly, L.; Boukari, S.; Ohresser, P.; Bertran, F.; Le Fèvre, P.; Thakur, P. et al. Direct observation of a highly spin-polarized organic spinterface at room temperature. Sci. Rep. 2013, 3, 1272.

47

Raman, K. V.; Kamerbeek, A. M.; Mukherjee, A.; Atodiresei, N.; Sen, T. K.; Lazic, P.; Caciuc, V.; Michel, R.; Stalke, D.; Mandal, S. K. et al. Interface-engineered templates for molecular spin memory devices. Nature 2013, 493, 509–513.

48

Javaid, S.; Bowen, M.; Boukari, S.; Joly, L.; Beaufrand, J. B.; Chen, X.; Dappe, Y. J.; Scheurer, F.; Kappler, J. P.; Arabski, J. et al. Impact on interface spin polarization of molecular bonding to metallic surfaces. Phys. Rev. Lett. 2010, 105, 077201.

49

Galbiati, M.; Tatay, S.; Barraud, C.; Dediu, A. V.; Petroff, F.; Mattana, R.; Seneor, P. Spinterface: Crafting spintronics at the molecular scale. MRS Bull. 2014, 39, 602–607.

50

Mugnaini, V.; Calzolari, A.; Ovsyannikov, R.; Vollmer, A.; Gonidec, M.; Alcon, I.; Veciana, J.; Pedio, M. Looking inside the perchlorinated trityl radical/metal spinterface through spectroscopy. J. Phys. Chem. Lett. 2015, 6, 2101–2106.

51

Kakavandi, R.; Savu, S. -A.; Caneschi, A.; Chassé, T.; Casu, M. B. At the interface between organic radicals and TiO2(110) single crystals: Electronic structure and paramagnetic character. Chem. Commun. 2013, 49, 10103–10105.

52

Savu, S. A.; Biddau, G.; Pardini, L.; Bula, R.; Bettinger, H. F.; Draxl, C.; Chassé, T.; Casu, M. B. Fingerprint of fractional charge transfer at the metal/organic interface. J. Phys. Chem. C 2015, 119, 12538–12544.

53

Heimel, G.; Duhm, S.; Salzmann, I.; Gerlach, A.; Strozecka, A.; Niederhausen, J.; Bürker, C.; Hosokai, T.; Fernandez-Torrente, I.; Schulze, G. et al. Charged and metallic molecular monolayers through surface-induced aromatic stabilization. Nat. Chem. 2013, 5, 187–194.

54

Graus, M.; Grimm, M.; Metzger, C.; Dauth, M.; Tusche, C.; Kirschner, J.; Kümmel, S.; Schöll, A.; Reinert, F. Electron–vibration coupling in molecular materials: Assignment of vibronic modes from photoelectron momentum mapping. Phys. Rev. Lett. 2016, 116, 147601.

55

Savu, S. -A.; Biswas, I.; Sorace, L.; Mannini, M.; Rovai, D.; Caneschi, A.; Chassé, T.; Casu, M. B. Nanoscale assembly of paramagnetic organic radicals on Au(111) single crystals. Chem. —Eur. J. 2013, 19, 3445–3450.

56

Kakavandi, R.; Ravat, P.; Savu, S. A.; Borozdina, Y. B.; Baumgarten, M.; Casu, M. B. Electronic structure and stability of fluorophore–nitroxide radicals from ultrahigh vacuum to air exposure. ACS Appl. Mater. Interfaces 2015, 7, 1685–1692.

57

Likhtenshtein, G. I. Novel fluorescent methods for biotechnological and biomedical sensoring: Assessing antioxidants, reactive radicals, NOdynamics, immunoassay, and biomembranes fluidity. Appl. Biochem. Biotechnol. 2009, 152, 135–155.

58

Wang, H. M.; Zhang, D. Q.; Guo, X. F.; Zhu, L. Y.; Shuai, Z. G.; Zhu, D. B. Tuning the fluorescence of 1-imino nitroxide pyrene with two chemical inputs: Mimicking the performance of an "AND" gate. Chem. Commun. 2004, 670–671.

59

Hughes, B. K.; Braunecker, W. A.; Ferguson, A. J.; Kemper, T. W.; Larsen, R. E.; Gennett, T. Quenching of the perylene fluorophore by stable nitroxide radical-containing macromolecules. J. Phys. Chem. B 2014, 118, 12541–12548.

60

Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229.

61

Jones, F. H. Teeth and bones: Applications of surface science to dental materials and related biomaterials. Surf. Sci. Rep. 2001, 42, 75–205.

62

Pang, C. L.; Lindsay, R.; Thornton, G. Chemical reactions on rutile TiO2(110). Chem. Soc. Rev. 2008, 37, 2328–2353.

63

Diebold, U.; Li, S. C.; Schmid, M. Oxide surface science. Annu. Rev. Phys. Chem. 2010, 61, 129–148.

64

Caneschi, A.; Casu, M. B. Substrate-induced effects in thin films of a potential magnet composed of metal-free organic radicals deposited on Si(111). Chem. Commun. 2014, 50, 13510–13513.

65

Kakavandi, R.; Savu, S. -A.; Caneschi, A.; Casu, M. B. Paramagnetic character in thin films of metal-free organic magnets deposited on TiO2(110) single crystals. J. Phys. Chem. C 2013, 117, 26675–26679.

66

Savu, S. -A.; Sonström, A.; Bula, R.; Bettinger, H. F.; Chassé, T.; Casu, M. B. Intercorrelation of electronic, structural, and morphological properties in nanorods of 2, 3, 9, 10-tetrafluoropentacene. ACS Appl. Mater. Interfaces 2015, 7, 19774–19780.

67

Casu, M. B.; Schuster, B. -E.; Biswas, I.; Raisch, C.; Marchetto, H.; Schmidt, T.; Chassé, T. Locally resolved core-hole screening, molecular orientation, and morphology in thin films of diindenoperylene deposited on Au(111) single crystals. Adv. Mater. 2010, 22, 3740–3744.

68

Di Valentin, C.; Pacchioni, G.; Selloni, A. Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces. Phys. Rev. Lett. 2006, 97, 166803.

69

Borozdina, Y. B.; Kamm, V.; Laquai, F.; Baumgarten, M. Tuning the sensitivity of fluorophore–nitroxide radicals. J. Mater. Chem. 2012, 22, 13260–13267.

70

Hesse, R.; Chassé, T.; Streubel, P.; Szargan, R. Error estimation in peak-shape analysis of XPS core-level spectra using UNIFIT 2003: How significant are the results of peak fits? Surf. Interface Anal. 2004, 36, 1373–1383.

71

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials. J. Phys. : Condens. Matter 2009, 21, 395502.

72

Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

73

Pehlke, E.; Scheffler, M. Evidence for site-sensitive screening of core holes at the Si and Ge(001) surface. Phys. Rev. Lett. 1993, 71, 2338–2341.

File
12274_2016_1228_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 June 2016
Revised: 15 July 2016
Accepted: 21 July 2016
Published: 10 September 2016
Issue date: November 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This paper is in loving memory of Daniel Eppacher that contributed to the experiments and their fit analysis. He would have appeared as a second author. RIP Daniel.

The authors thank W. Neu, E. Nadler, H. Adler for technical support, Dr. Sabine Savu for the AFM measurements. Financial support from German Research Foundation (DFG) under the contract CA852/5-1 and CA852/5-2 is gratefully acknowledged. A. C. acknowledges Italian Ministry of Education, Universities and Research (MIUR) for partial founding, through "progetto premiale EoS".

Return